電源工程師設計全攻略(二)--開關電源設計
隨著電力電子技術的高速發展,電力電子設備與人們的工作、生活的關系日益密切,而電子設備都離不開可靠的電源,進入80年代計算機電源全面實現 了開關電源化,率先完成計算機的電源換代,進入90年代開關電源相繼進入各種電子、電器設備領域,程控交換機、通訊、電子檢測設備電源、控制設備電源等都 已廣泛地使用了開關電源,更促進了開關電源技術的迅速發展。開關電源和線性電源相比,二者的成本都隨著輸出功率的增加而增長,但二者增長速率各異。線性電 源成本在某一輸出功率點上,反而高于開關電源。隨著電力電子技術的發展和創新,使得開關電源技術在不斷地創新,這一成本反轉點日益向低輸出電力端移動,這 為開關電源提供了廣泛的發展空間。
本文引用地址:http://www.j9360.com/article/256268.htm本系列文章為你搜集開關電源相關設計資料,加深你對開關電源的理解,讓你的電路設計如虎添翼!
一、開關電源的基本工作原理
開關電源接控制方式分為調寬式和調頻式兩種,在實際的應用中,調寬式使用得較多,在目前開發和使用的開關電源集成電路中,絕大多數也為脈寬調制型。因此下面就主要介紹調寬式開關穩壓電源。
調寬式開關穩壓電源的基本原理可參見下圖。

對于單極性矩形脈沖來說,其直流平均電壓Uo取決于矩形脈沖的寬度,脈沖越寬,其直流平均電壓值就越高。直流平均電壓U。可由公式計算,
即Uo=Um×T1/T
式中Um為矩形脈沖最大電壓值;T為矩形脈沖周期;T1為矩形脈沖寬度。
從上式可以看出,當Um 與T 不變時,直流平均電壓Uo 將與脈沖寬度T1 成正比。這樣,只要我們設法使脈沖寬度隨穩壓電源輸出電壓的增高而變窄,就可以達到穩定電壓的目的。
二、開關電源的原理電路
1、基本電路

圖二 開關電源基本電路框圖
開關電源的基本電路框圖如圖二所示。
交流電壓經整流電路及濾波電路整流濾波后,變成含有一定脈動成份的直流電壓,該電壓進人高頻變換器被轉換成所需電壓值的方波,最后再將這個方波電壓經整流濾波變為所需要的直流電壓。
控制電路為一脈沖寬度調制器,它主要由取樣器、比較器、振蕩器、脈寬調制及基準電壓等電路構成。這部分電路目前已集成化,制成了各種開關電源用集成電路。控制電路用來調整高頻開關元件的開關時間比例,以達到穩定輸出電壓的目的。
2.單端反激式開關電源
單端反激式開關電源的典型電路如圖三所示。電路中所謂的單端是指高頻變換器的磁芯僅工作在磁滯回線的一側。所謂的反激,是指當開關管VT1 導通時,高頻變壓器T初級繞組的感應電壓為上正下負,整流二極管VD1處于截止狀態,在初級繞組中儲存能量。當開關管VT1截止時,變壓器T初級繞組中存儲的能量,通過次級繞組及VD1 整流和電容C濾波后向負載輸出。

單端反激式開關電源是一種成本最低的電源電路,輸出功率為20-100W,可以同時輸出不同的電壓,且有較好的電壓調整率。唯一的缺點是輸出的紋波電壓較大,外特性差,適用于相對固定的負載。
單端反激式開關電源使用的開關管VT1 承受的最大反向電壓是電路工作電壓值的兩倍,工作頻率在20-200kHz之間。
3.單端正激式開關電源
單端正激式開關電源的典型電路如圖四所示。這種電路在形式上與單端反激式電路相似,但工作情形不同。當開關管VT1導通時,VD2也
導通,這時電網向負載傳送能量,濾波電感L儲存能量;當開關管VT1截止時,電感L通過續流二極管VD3 繼續向負載釋放能量。

在電路中還設有鉗位線圈與二極管VD2,它可以將開關管VT1的最高電壓限制在兩倍電源電壓之間。為滿足磁芯復位條件,即磁通建立和
復位時間應相等,所以電路中脈沖的占空比不能大于50%。由于這種電路在開關管VT1導通時,通過變壓器向負載傳送能量,所以輸出功率范圍大,可輸出50-200 W的功率。電路使用的變壓器結構復雜,體積也較大,正因為這個原因,這種電路的實際應用較少。
濾波器相關文章:濾波器原理
dc相關文章:dc是什么
濾波器相關文章:濾波器原理
交換機相關文章:交換機工作原理
電源濾波器相關文章:電源濾波器原理
脈沖點火器相關文章:脈沖點火器原理 脈寬調制相關文章:脈寬調制原理 數字濾波器相關文章:數字濾波器原理 全息投影相關文章:全息投影原理
評論