a一级爱做片免费观看欧美,久久国产一区二区,日本一二三区免费,久草视频手机在线观看

新聞中心

EEPW首頁 > 智能計算 > 設計應用 > 芯片成為人工智能平臺的關鍵一役

芯片成為人工智能平臺的關鍵一役

作者: 時間:2018-08-03 來源:網絡 收藏

人們越來越看好的前景及其潛在的爆發力,而能否發展出具有超高運算能力且符合市場的成為平臺的關鍵一役。由此,2016年成為企業和互聯網巨頭們在領域全面展開部署的一年。而在這其中,英偉達保持著絕對的領先地位。但隨著包括谷歌、臉書、微軟、亞馬遜以及百度在內的巨頭相繼加入決戰,領域未來的格局如何,仍然待解。

本文引用地址:http://www.j9360.com/article/201808/385339.htm

在2016年,所有人都看到了人工智能的前景和其潛在的爆發力,但不管是AlphaGo還是自動駕駛汽車,要想使得任何精妙算法得以實現,其基礎是硬件的運算能力:也就是說,能否發展出超高運算能力又符合市場需求的芯片成為了人工智能平臺的關鍵一役。

因此,毫無疑問,2016年也成為了芯片企業和互聯網巨頭們在芯片領域全面展開部署的一年:先有CPU芯片巨頭因特爾年內三次大手筆收購人工智能和GPU領域企業;后有谷歌宣布開發自己的處理系統,而蘋果、微軟、臉書和亞馬遜也都紛紛加入。

而在這其中,領跑者英偉達(Nvidia)因其在人工智能領域的優勢使其成為了資本市場的絕對寵兒:在過去的一年中,曾經以游戲芯片見長的Nvidia股價從十幾年的穩居30美元迅速飆升至120美元。

就當資本市場都在猶豫是否人工智能風口使得英偉達股價虛高時,2月10日,英偉達發布2016年第四季度的財報顯示,其營收同比增長55%,凈利潤達到了6.55億美元,同比增長216%。

“正當Intel、微軟等巨頭投資人工智能為基礎的芯片技術時,英偉達已經以Q4財報顯示,這家已經在人工智能領域投資將近12年的芯片企業已經開始就此收獲可觀的盈利。”資深技術評論家Therese PoletTI在其財報發布后指出。

研究機構TracTIca LLC估計,由于深度學習項目產生的硬件花費將從2015年的4360萬美元,上升到2024年的41億美元,而企業的相關軟件花費將同期從1.09億美元上升到100億美元。

正是這一龐大的市場吸引著谷歌、臉書、微軟、亞馬遜以及百度在內的巨頭相繼宣布企業向人工智能領域的技術轉向。“在人工智能相關技術上,目前英偉達仍然保持著絕對的領先,但隨著包括谷歌在內的TPU等技術不斷推向市場,未來的AI硬件格局仍然待解。”一位不便具名的歐洲資深從業人員向21世紀經濟報道表示。

英偉達在GPU領域顯著領先

根據英偉達最新公布的年報,其最主要的業務領域均出現了兩位數以上的增長。除了其一直占有領先優勢的游戲業務增長之外,其更多的漲幅事實上來自于數據中心業務和自動駕駛兩大全新業務板塊。

年報數據顯示,數據中心業務有138%的增長,而自動駕駛有52%的增長。

“事實上,這是整個英偉達財報里最具有說明力的內容,因為數據業務和自動駕駛的增長根本上是人工智能和深度學習的發展所激發的。”一位美國計算機硬件分析師向21世紀經濟報道表示。

在目前的深度學習領域,把神經網絡投入實際應用要經歷兩個階段:首先是訓練,其次是執行。從目前的環境來看,訓練階段非常需要處理大量數據的GPU(圖形處理器,下同),也就是以游戲和高度圖形化的應用做圖像渲染起家的英偉達領先的領域;而在轉型階段則需要處理復雜程序的CPU,也就是微軟十幾年來領先的領域。

“英偉達目前的成功事實上代表了GPU的成功,它正是最早的GPU領先者之一。”上述行業分析師表示。

深度學習神經網絡尤其是幾百上千層的神經網絡,對高性能計算需求非常高,而GPU對處理復雜運算擁有天然的優勢:它有出色的并行矩陣計算能力,對于神經網絡的訓練和分類都可以提供顯著的加速效果。

舉個例子,研究員不用一開始就人工定義一個人臉,而是可以將幾百萬個人臉的圖像展示出來,讓計算機自己定義人臉應該是什么樣子的。學習這樣的例子時,GPU可以比傳統處理器更加快速,大大加快了訓練過程。

因此,搭載GPU的超級計算機已經成為訓練各種深度神經網絡的不二選擇,比如Google大腦早期就是使用Nvidia的GPU做深度學習。“我們正在搭建一款帶有跟蹤功能的攝像裝置,因此需要找到最適合的芯片,GPU是我們的首選。”歐盟AR初創企業Quine CEO Gunleik Groven在今年一月的CES(國際消費電子展)現場向本報記者表示。

目前,谷歌、Facebook、微軟、Twitter和百度等互聯網巨頭,都在使用這種叫做GPU的芯片,讓服務器學習海量的照片、視頻、聲音文檔,以及社交媒體上的信息,來改善搜索和自動化照片標記等各種各樣的軟件功能。一些汽車制造商也在利用這項技術,開發可以感知周圍環境、避開危險區域的無人駕駛汽車。

除了在GPU和圖形計算領域長期領先,英偉達也是最早一批在人工智能領域進行投資的科技公司。2008年,當時在斯坦福做研究的吳恩達發表了一篇用GPU上的CUDA進行神經網絡訓練的論文。2012年“深度學習三巨頭”之一Geoff Hilton的學生Alex Krizhevsky用英偉達的GeForce顯卡在ImageNet中將圖像識別準確率大幅提升,這也是英偉達CEO黃仁勛時常提到的英偉達注重深度學習的開端。

有報告顯示,世界上目前約有3000多家AI初創公司,大部分都采用了Nvidia提供的硬件平臺。

“深度學習被證明是非常有效的。”黃仁勛在季報2月10日的發布會中表示。在列舉目前GPU計算平臺正在人工智能、云計算、游戲和自動駕駛領域快速展開應用的同時,黃仁勛表示,在未來數年間,深度學習將會成為計算機計算的一種基礎性的核心工具。

聲明:電子發燒友網轉載作品均盡可能注明出處,該作品所有人的一切權利均不因本站轉載而轉移。作者如不同意轉載,即請通知本站予以刪除或改正。轉載的作品可能在標題或內容上或許有所改動



關鍵詞: 芯片 人工智能

評論


相關推薦

技術專區

關閉