a一级爱做片免费观看欧美,久久国产一区二区,日本一二三区免费,久草视频手机在线观看

新聞中心

EEPW首頁 > 業界動態 > 智能圖像處理 讓機器視覺及其應用更智能高效

智能圖像處理 讓機器視覺及其應用更智能高效

作者: 時間:2018-06-15 來源:安防知識網 收藏
編者按:無論是“中國制造2025”還是“工業4.0”都離不開人工智能,離不開計算機視覺,而智能圖像處理是機器視覺的核心技術,隨著圖像處理水平的不斷提高,一定會有力地推動機器視覺的迅速發展。

  (Machine Vision)是人工智能領域中發展迅速的一個重要分支,目前正處于不斷突破、走向成熟的階段。一般認為“是通過光學裝置和非接觸傳感器自動地接受和處理一個真實場景的圖像,通過分析圖像獲得所需信息或用于控制機器運動的裝置”,可以看出智能圖像處理技術在中占有舉足輕重的位置。

本文引用地址:http://www.j9360.com/article/201806/381668.htm

  智能圖像處理是指一類基于計算機的自適應于各種應用場合的圖像處理和分析技術,本身是一個獨立的理論和技術領域,但同時又是機器視覺中的一項十分重要的技術支撐。

  具有智能圖像處理功能的機器視覺,相當于人們在賦予機器智能的同時為機器按上了眼睛,使機器能夠“看得見”、“看得準”,可替代甚至勝過人眼做測量和判斷,使得機器視覺系統可以實現高分辨率和高速度的控制。而且,機器視覺系統與被檢測對象無接觸,安全可靠。

  1.機器視覺技術

  機器視覺的起源可追溯到20世紀60年代美國學者L.R.羅伯茲對多面體積木世界的圖像處理研究,70年代麻省理工學院(MIT)人工智能實驗室“機器視覺”課程的開設。到80年代,全球性機器視覺研究熱潮開始興起,出現了一些基于機器視覺的應用系統。90年代以后,隨著計算機和半導體技術的飛速發展,機器視覺的理論和應用得到進一步發展。

  進入21世紀后,機器視覺技術的發展速度更快,已經大規模地應用于多個領域,如智能制造、智能交通、醫療衛生、安防監控等領域。目前,隨著人工智能浪潮的興起,機器視覺技術正處于不斷突破、走向成熟的新階段。

  在中國,機器視覺的研究和應用開始于20世紀90年代。從跟蹤國外品牌產品起步,經過二十多年的努力,國內的機器視覺從無到有,從弱到強,不僅理論研究進展迅速,而且已經出現一些頗具競爭力的公司和產品。估計隨著國內對機器視覺研究、開發和推廣的不斷深入,趕上和超越世界水平已不是遙不可及的事情了。

  常見機器視覺系統主要可分為兩類,一類是基于計算機的,如工控機或PC,另一類是更加緊湊的嵌入式設備。典型的基于工控機的機器視覺系統主要包括:光學系統,攝像機和工控機(包含圖像采集、圖像處理和分析、控制/通信)等單元。機器視覺系統對核心的圖像處理要求算法準確、快捷和穩定,同時還要求系統的實現成本低,升級換代方便。

  2.智能圖像處理技術

  機器視覺的圖像處理系統對現場的數字圖像信號按照具體的應用要求進行運算和分析,根據獲得的處理結果來控制現場設備的動作,其常見功能如下:

  (1)圖像采集

  圖像采集就是從工作現場獲取場景圖像的過程,是機器視覺的第一步,采集工具大多為CCD或CMOS照相機或攝像機。照相機采集的是單幅的圖像,攝像機可以采集連續的現場圖像。就一幅圖像而言,它實際上是三維場景在二維圖像平面上的投影,圖像中某一點的彩色(亮度和色度)是場景中對應點彩色的反映。這就是我們可以用采集圖像來替代真實場景的根本依據所在。

  如果相機是模擬信號輸出,需要將模擬圖像信號數字化后送給計算機(包括嵌入式系統)處理。現在大部分相機都可直接輸出數字圖像信號,可以免除模數轉換這一步驟。不僅如此,現在相機的數字輸出接口也是標準化的,如USB、VGA、1394、HDMI、WiFi、Blue Tooth接口等,可以直接送入計算機進行處理,以免除在圖像輸出和計算機之間加接一塊圖像采集卡的麻煩。后續的圖像處理工作往往是由計算機或嵌入式系統以軟件的方式進行。

  (2)圖像預處理

  對于采集到的數字化的現場圖像,由于受到設備和環境因素的影響,往往會受到不同程度的干擾,如噪聲、幾何形變、彩色失調等,都會妨礙接下來的處理環節。為此,必須對采集圖像進行預處理。常見的預處理包括噪聲消除、幾何校正、直方圖均衡等處理。

  通常使用時域或頻域濾波的方法來去除圖像中的噪聲;采用幾何變換的辦法來校正圖像的幾何失真;采用直方圖均衡、同態濾波等方法來減輕圖像的彩色偏離。總之,通過這一系列的圖像預處理技術,對采集圖像進行“加工”,為體機器視覺應用提供“更好”、“更有用”的圖像。

  (3)

  就是按照應用要求,把圖像分成各具特征的區域,從中提取出感興趣目標。在圖像中常見的特征有灰度、彩色、紋理、邊緣、角點等。例如,對汽車裝配流水線圖像進行分割,分成背景區域和工件區域,提供給后續處理單元對工件安裝部分的處理。

  多年來一直是圖像處理中的難題,至今已有種類繁多的分割算法,但是效果往往并不理想。近來,人們利用基于神經網絡的深度學習方法進行圖像分割,其性能勝過傳統算法。

  (4)目標識別和分類

  在制造或安防等行業,機器視覺都離不開對輸入圖像的目標進行識別和分類處理,以便在此基礎上完成后續的判斷和操作。識別和分類技術有很多相同的地方,常常在目標識別完成后,目標的類別也就明確了。近來的圖像識別技術正在跨越傳統方法,形成以神經網絡為主流的智能化圖像識別方法,如卷積神經網絡(CNN)、回歸神經網絡(RNN)等一類性能優越的方法。

  (5)目標定位和測量

  在智能制造中,最常見的工作就是對目標工件進行安裝,但是在安裝前往往需要先對目標進行定位,安裝后還需對目標進行測量。安裝和測量都需要保持較高的精度和速度,如毫米級精度(甚至更小),毫秒級速度。這種高精度、高速度的定位和測量,倚靠通常的機械或人工的方法是難以辦到的。在機器視覺中,采用圖像處理的辦法,對安裝現場圖像進行處理,按照目標和圖像之間的復雜映射關系進行處理,從而快速精準地完成定位和測量任務。

  (6)目標檢測和跟蹤

  圖像處理中的運動目標檢測和跟蹤,就是實時檢測攝像機捕獲的場景圖像中是否有運動目標,并預測它下一步的運動方向和趨勢,即跟蹤。并及時將這些運動數據提交給后續的分析和控制處理,形成相應的控制動作。圖像采集一般使用單個攝像機,如果需要也可以使用兩個攝像機,模仿人的雙目視覺而獲得場景的立體信息,這樣更加有利于目標檢測和跟蹤處理。


上一頁 1 2 下一頁

評論


相關推薦

技術專區

關閉