可將數據轉換器IP成功集成到系統芯片的12種設計技
技術2:數據轉換器靠近模擬I/O焊盤
進入模擬-數字轉換器輸入的任何噪聲或不需要的信號將被轉換器視為“真”信號,繼而出現在數字輸出中。模擬-數字轉換器能夠區分的最小電壓(用最低有效位(LSB)表示)決定數據轉換器的準確度,也是模擬-數字轉換器最大擺幅(FS)及其分辨率(N)的函數(如以下方程所示)。以0.5V峰-峰最大輸入擺幅的12位單端模擬-數字轉換器為例,最低有效位范圍很小,僅為122.1μV。
LSB = FS/2N
在如此高的準確度要求下,如果轉換的數字信號(攻擊者)電容耦合(串擾)到模擬-數字轉換器輸入(受害者),數字輸出信號中耦合的攻擊信號的頻譜含量可能會超出模擬-數字轉換器的噪聲本底值,從而影響系統性能(頻譜純度)。
同樣,串擾數字-模擬轉換器輸出對系統性能產生相似的影響,即轉換的數字信號電容耦合到數字-模擬轉換器輸出可以生成超出數字-模擬轉換器噪聲本底值的頻譜含量。
采用差分輸入的模擬-數字轉換器,或是采用差分輸出的數字-模擬轉換器,都具有較強的抗共模噪聲干擾能力,因為攻擊者均衡地耦合到正負差分信號。為充分利用這種高抗噪聲干擾能力,使用這些數據轉換器應同時采用正確屏蔽和外部信號布線等設計技術。
當數據轉換器需要外部基準時也會出現類似的問題。由于基準決定數據轉換器的滿幅輸入擺幅,如果噪聲或不需要的信號與基準耦合,就會成為數據轉換器輸出信號的一部分。
圖4a顯示了28納米12位Sigma-DeltaIQ模擬-數字轉換器頻譜,可以看到轉換器輸入與基準信號之間有耦合。這會導致第二諧波(h2)能量過大,將總諧波失真(THD)降低近14dB。相反,圖4b顯示的是相同IQ模擬-數字轉換器在耦合消除后的性能,這會使總諧波失真改善,達到-72dBc。


基準對流經非零電阻(電阻壓降)基準路徑的非零電流造成的壓降很敏感。這一效應會在轉換中產生系統性的偏移(offset)和增益誤差(gain error)。
考慮到這些影響,將數據轉換器正確植入系統芯片之后,下一步就是對轉換器和I/O之間的模擬信號進行布線,同時采用以下技術:
技術3:保持模擬布線路徑簡短
保持模擬布線路徑盡可能簡短,使無關信號不太可能耦合到模擬I/O出或基準中。
技術4:增加屏蔽
為盡可能減少關鍵模擬信號的噪聲耦合或串擾,特別是在串擾無法避免的情況下,設計人員應在攻擊者和受害者軌跡之間增加屏蔽。圖5介紹了增加有效屏蔽的正確方法:通過中間層(金屬N+1)將以金屬N布線的模擬信號軌跡A和B與以金屬N+2布線的噪聲信號C屏蔽開來,完全覆蓋重疊區域,并與干凈的模擬接地電源連接。通過在臨近信號增加金屬層走線,可在同層的金屬間(分別是金屬N與N+2)實現進一步屏蔽隔離。
只有在必須的情況下才增加屏蔽,而且是不沿著所有路徑,以避免不必要地增加信號寄生電容。

評論