高速PCB中旁路電容的分析
1 引言
本文引用地址:http://www.j9360.com/article/180836.htm隨著系統體積的減小,工作頻率的提高,系統的功能復雜化,這樣就需要多個不同的嵌入式功能模塊同時工作。只有各個模塊具有良好的EMC和較低的EMI,才能保證整個系統功能的實現。這就要求系統自身不僅需要具有良好的屏蔽外界干擾的性能,同時還要求在和其他的系統同時工作時,不能對外界產生嚴重的EMI。另外,開關電源在高速數字系統設計中的應用越來越廣泛,一個系統中往往需要用到多種電源。不僅電源系統容易受到干擾,而且電源供應時產生的噪聲會給整個系統帶來嚴重的EMC問題。因此,在高速PCB設計中,如何更好的濾除電源噪聲是保證良好電源完整性的關鍵。本文分析了電容的濾波特性,電容的寄生電感電容的濾波性能帶來的影響,以及PCB中的電流環現象,繼而針對如何選擇旁路電容做出了一些總結。本文還著重分析了電源噪聲和地彈噪聲的產生機理并在其基礎上對旁路電容在PCB中的各種擺放方式做出了分析和比較。
2 電容的插入損耗特性、頻率響應特性與電容的濾波特性
2.1 理想電容的插入損耗特性
EMI電源濾波器對干擾噪聲的抑制能力通常用插入損耗(Insertion Loss)特性來衡量。插入損耗的定義為:沒有濾波器接入時,從噪聲源傳輸到負載的噪聲功率P1和接入濾波器后,噪聲源傳輸到負載的噪聲功率P2之比,用dB(分貝)表示。圖1是理想電容的插入損耗特性,可以看出,1μF電容對應的插入損耗曲線斜率接近20dB/10倍頻。
觀察其中某一條插入損耗特性,當頻率增加時,電容的插入損耗值是增加的,也就是說P1/P2值是增加的,這意味著系統通過電容濾波以后,能夠傳輸到負載的噪聲減少,電容濾除高頻噪聲的能力增強。從理想電容的公式分析,當電容一定時,信號頻率越高,回路阻抗越低,也即電容易于濾除高頻的成分。從兩個方面得出的結論是相同的。
再觀察不同電容所對應的曲線,在頻率很低的情況下,各種電容所對應的插入損耗值是近似相同的,但是隨著頻率的增加,小電容的插入損耗值增加的幅度較大電容要慢一些,P1/P2值增加得也就較慢,也就是說大電容更容易濾除低頻噪聲。因而我們在設計高速電路板時,通常在電路板的電源接入端放置一個1~10μF的電容,濾除低頻噪聲;在電路板上每個器件的電源與地線之間放置一個0.01~0.1μF的電容,濾除高頻噪聲。
連接在電源和地之間的電容的阻抗可由如下公式計算:,電容濾波的目的是濾除疊加在電源系統中的交流成分,從上面的公式可以看出,當頻率一定時,電容值越大,回路中的阻抗就越小,這樣交流信號就越容易通過電容流到地平面上去,換句話說,即似乎電容值越大其濾波效果越好,事實上并非如此,因為實際電容并不具有理想電容的所有特性。實際電容存在寄生成分,這是構造電容器極板和引線時所形成的,而這些寄生成分可等效為串聯在電容上的電阻與電感,通常稱之為等效串聯電阻(ESR)和等效串聯電感(ESL),其模型如圖2的左半部分所示。如果忽略電容的寄生電阻則模型可等效為圖2的右半部分。這樣電容實際上就是一個串聯諧振電路。在實際的電路或者PCB設計中,電容寄生電感的存在將對電容的濾波性能帶來很大的影響,因此在系統設計時應該選擇寄生電感比較小的電容。
2.2 實際電容的高頻響應特性
從2.1節我們知道,實際電容在工作時由于存在寄生電感的緣故,使得電容回路成為一個串聯諧振回路。諧振頻率為,式中:L為等效電感;C為實際電容。如圖3所示,當頻率小于f0時,呈現為電容;頻率大于f0時,呈現為電感。所以,電容器更像是一個帶阻濾波器,而不是一個低通濾波器。電容的ESL和ESR是由電容的構造和所用介質材料決定的,與電容容量無關。對于高頻的抑制能力并不會因為更換大容量的同類型電容而增強。更大容量的同類型電容器的阻抗在頻率低于f0時,比小容量電容器的阻抗小,但是,當頻率大于f0時,ESL決定了二者的阻抗沒有差別。可見,為了改進高頻濾波特性,必須使用具有較低ESL的電容器。任何一種電容器的有效頻率范圍是有限的,而對于一個系統,既有低頻噪聲,又有高頻噪聲,所以通常要用不同類型的電容并聯來達到更寬的有效頻率范圍。

評論