基于雙計算機的仿人機器人的視覺跟蹤系統
引言
仿人機器人的頭部視覺跟蹤系統利用視覺信息作為反饋,來規劃機器人的頭部運動使其能實時的跟蹤運動目標。視覺跟蹤是仿人機器人的重要功能之一,它的研究對于仿人機器人的自主導航、人機交互以及視覺伺服都具有極其重要的意義。
視覺跟蹤的實時性是仿人機器人的重要性能要求之一。針對這一系統要求,近年來有很多學者設計出了多種系統結構。文[1]中作者設計了一種基于CAN總線的分布式的仿人機器人的控制系統,其中的視覺系統通過無線局域網與控制系統進行通訊。日本仿人機器人ASIMO的運動控制系統采用集中式控制方式,視覺系統通過網絡與運動控制系統通訊[2]。一臺計算機難以滿足視覺跟蹤的實時性要求,為了實現實時跟蹤,本文提出并實現了一種基于MemoLink通訊的雙計算機的視覺跟蹤系統。該系統通訊可靠、體積小,便于將兩臺計算機安置于仿人機器人的胸腔內。
目標分割的穩定性是機器人視覺跟蹤系統的重要要求之一,近幾年來很多學者對這個領域進行了研究,大多數的機器人目標跟蹤系統選用了單一的圖像信息,有的采用了物體的顏色信息[3],有的采用了物體的輪廓信息[4]。然而在復雜的非結構化的室內背景下,單一的圖像信息不能保證系統穩定的分割出目標。多種圖像信息的融合是解決目標物體識別穩定性的方法之一[5]。本文中作者提出了一種集成深度、顏色和形狀信息的逐步逼近目標區域的快速目標分割方法
1 系統結構
仿人機器人BHR1的系統結構如圖1所示,其全身有32個自由度,其中頭部有2個自由度,可以在兩個方向上自由轉動,即左右轉動和上下轉動。面部放置兩只CCD攝像頭作為視覺傳感器來模擬人的眼睛。采用SVS立體視覺處理系統處理視覺信息,SVS系統提供了每幀圖像的深度圖像[6]。
圖1 仿人型機器人(BHR1)跟蹤系統的系統結構
兩臺計算機置于機器人的胸腔內,其中一臺計算機負責視覺信息的處理,另外一臺負責機器人的運動控制。前者被稱之為信息處理子系統,后者被稱為運動控制子系統, 兩臺計算機通過Memolink進行通訊。信息處理子系統利用Windows強大的多媒體功能來處理立體視覺信息,實現目標的快速分割以及物體的運動估計和預測。運動控制子系統以Linux/RT-Linux實時操作系統作為平臺,保證了機器人控制系統的實時性。除了頭部運動關節,運動控制系統負責仿人機器人全部關節的控制。Memolink 是系統間進行快速通信的一種有效解決方案,是連接信息處理子系統和運動控制子系統的橋梁。具有通信速度快和通信前無需握手的優點。
整個跟蹤過程執行如下的循環:搜索目標――發現目標――匹配――狀態估計和預測――運動控制。不同的匹配方法應用產生了不同的跟蹤方法。本文中作者提出了一種融合深度、顏色和形狀信息的逐步逼近目標區域的快速分割方法。在實時的跟蹤系統中,運動估計和預測有效的減少了檢測區域,提高了系統的跟蹤速度。研究中采用經典的卡爾曼濾波器進行運動目標的狀態估計和預測。
視覺信息處理子系統完成目標物體的快速分割,同時估計和預測目標物體的運動信息,把目標物體的位置信息實時地傳遞給運動控制子系統。目標識別的穩定性對整個跟蹤系統的穩定性起著至關重要的作用。
在復雜背景的非結構化的室內環境下,用于機器人視覺跟蹤的圖像信息有:深度、顏色、形狀、邊緣、運動等。基于多信息的運動目標的分割方法中,所選取的信息應該具有互補性。物體的顏色是物體最顯著的特征,適合用于目標的跟蹤。但是當背景中包含同樣顏色的物體時,基于顏色的跟蹤將會失敗。深度信息有助于系統得到粗略的前景區域,也就是包含運動物體的目標候選窗口,另外基于深度分割的粗略前景輪廓的獲得計算量小,速度快。基于RHT(Random Hough transform)算法的形狀檢測器可以檢測各種不同的幾何形狀,比如:橢圓形、三角形和多邊形,進而把目標候選區域中相同顏色的物體區別開來。
評論