a一级爱做片免费观看欧美,久久国产一区二区,日本一二三区免费,久草视频手机在线观看

新聞中心

EEPW首頁 > 元件/連接器 > 設計應用 > 鋼水成分傳感器及其應用進展

鋼水成分傳感器及其應用進展

作者: 時間:2011-03-27 來源:網絡 收藏
氧有三種方式:副槍、投入式溫度—氧、常規的插入式氧。在轉爐煉鋼過程中根據測定的氧含量調節吹氧量可減少倒爐次數,這樣既縮短處理時間減少溫降,同時可提高回收率、降低耐火材料消耗。根據傳感器測定的氧含量又能估算碳含量,省略取樣定碳大約可以節約5~8min。副槍的測定結果最準確,使用投入式傳感器可縮短出鋼-出鋼時間10min。由此而產生的效益非常可觀。

電爐上應用氧傳感器的目的是根據氧含量計算碳含量并確定脫氧劑的添加量。需要注意的是氧傳感器測定的是氧活度,而實際工藝過程的[C][O]積受多種過程參數影響,如C/O2噴吹效率或者局部有未熔化的廢鋼等。各種實際煉鋼過程的[C][O]積數值也不盡相同,使用時要注意根據工藝經驗來選取。

2. 鋼包精煉中鋼水氧含量測定

鋼水注入鋼包后使用氧傳感器測定鋼水中的氧含量可以確定脫氧劑加入量、確認脫氧效果,如果輔以渣中FeO活度傳感器[18],可以控制精煉渣調渣劑的添加、控制精煉脫硫過程和鋼水潔凈度,防止水口堵塞。

3. RH真空精煉脫氫過程的動態控制

常規的取樣分析無法準確知道過程中氫含量的變化情況。住友金屬工業公司在鹿島鋼廠采用Hydris作為氫傳感器對RH脫氫過程進行了動態控制實驗。[19]鋼包容量為270t,真空裝置有3臺增壓機,2個噴射器,四臺水泵。真空容量是0.5托1000kg/h, 1.0托1500kg/h,10托5000kg/h。Hydris的設置見圖5。


圖5 用HYDRIS檢測RH真空脫氫的設置

圖6給出了脫氫過程的動態控制與靜態控制的效果比較。動態脫氫控制縮短處理時間的效果如表1。


圖6 靜態控制與動態控制的RH脫氫效果比較

表1 動態脫氫控制縮短處理時間的效果

4. 連鑄過程由氣體引起的鋼坯質量問題

年美國CitiSteel在用Hydris測定鋼中氫含量的過程中發現,中間包鋼水在穩態鑄造期間其中氫含量隨當時的空氣露點升高而升高,最大變化量在2~3ppm[H]。添加脫氧劑、鋼包熱循環次數、連鑄的不同階段鋼中氫含量都有不同的變化[20]。

實際上鋼中溶解的[N]、[H]、[O]在鋼凝固過程中因溫度降低而過飽和析出氣體,這些氣體的總壓大于大氣壓時便會產生針孔、氣泡等缺陷。根據熱力學原理,可以給出不同碳含量的鋼種形成針孔的[N]、[O]含量區間,如圖7所示[21]。


圖7 含氮0~40ppm,氧20ppm~50ppm,不同含碳量的鋼在凝固終點出現針孔的條件

從圖7可以看出,對含碳0.1%,氧25ppm,氮40ppm的鋼,氫含量超過5.1ppm將產生針孔缺陷。而含碳量0.40%,氧25ppm,氮40ppm的鋼,氫含量超過3.5ppm就會產生針孔缺陷。研究發現,大量鋼包下渣及石灰中的氫氧化鈣是鋼包精煉過程鋼液吸氫的一個主要來源;大量鋼包下渣使鋼中氫增加,為鋼包渣改質而加入石灰帶入氫氧化鈣進一步使鋼液吸氫。圖8、9分別給出了不同鋼渣改質劑、鋼包下渣量與鋼中氫含量和針孔數量的關系。[21]從圖8可知,添加較多的螢石-石灰或硅鈣粉使中間包中鋼水氫含量增加。從圖9得知,鋼包帶渣多,導致鋼包渣改質劑添加前、后鋼液中的氫含量都高,單位面積表面針孔數也多。


圖8 渣改質劑添加量與中間包鋼水氫含量的關系


圖9 平均鋼包下渣深度、針孔數、鋼包渣改質前氫含量與中間包鋼氫含量的關系

四、結論

鋼水中各種成分的在線測定技術逐漸成熟。這些技術大大提高了鐵水預處理、二次精煉、連鑄等各工藝環節的過程控制水平,加深了人們對鋼中氣體引起的鑄坯質量問題的認識,為解決相關的質量問題提供了手段。我國的鋼水成分在線測定技術尤其是傳感器的研發相對落后,產品的質量穩定性亟待提高,新產品開發和新技術應用方面更應該加大投入。

作者介紹:李光強博士 武漢科技大學材料與冶金學院教授
研究方向 高純凈度、高性能、高附加值鋼鐵產品制備 純凈鋼的化學冶金 冶金資源綜合利用及環保 高溫熔體物理化學
光纖傳感器相關文章:光纖傳感器原理

上一頁 1 2 下一頁

評論


相關推薦

技術專區

關閉