串并聯諧振高壓脈沖電容充電電源的閉環控制
將模擬PI控制變成采用DSP實現的數字PI后,控制性能更加靈活。數字PI控制器模型為:
系統中因電流和功率控制要求不高,為防止頻繁動作,電流閉環和功率閉環都采用帶死區的PI調節器,在誤差超出死區范圍時才進行調節控制。
軟件實現時,充電啟動命令,先對DSP的EV賦初值輸出PWM開始充電,定時器0定時中斷后,采集電容兩端電壓值U1,等待定時器0下一個定時中斷,采集電容兩端電壓值U2,根據U1,U2,電容容量Co以及定時器0定時中斷時間T計算充電電流和功率:
Io=Co△u/△t=Co(U2-U1)/T,P=UIo=(U1+U2)Io/2 (3)
計算出充電電流和功率后,判斷如果未達到設定功率(1.2 kW),采用電流PI控制算法,改變逆變部分開關頻率和占空比,維持充電電流恒定;如果達到設定功率后,采用功率PI算法,改變逆變部分開關頻率和占空比,使輸出功率恒定。在未達到設定電壓95%前,不斷地循環采集計算,執行PI控制,到Uo達到設定電壓95%,EV PWM賦初值,小電流充電,達到設定的Uo,PWM停止輸出,完成充電。
電容充電完成后,若沒有立即釋放,由于電容或放電回路存在泄漏電流,導致電容兩端電壓逐漸減小,如果要求電壓精度較高,還可在充電末期加入小電流恒壓,保持閉環控制。
5 閉環實驗結果及分析
完成軟件編寫調試之后,利用600μF,15 kV高壓脈沖電容進行閉環控制充電的實驗,設定Uo=7 kV,功率1.2 kW。圖6a示出閉環后iL包絡和Uo波形。對比圖6a與圖2可知,恒頻時7 kV充電時間22 s,閉環后充電時間為17 s,充電速度明顯變快。圖6a中Uo波形前一階段斜率基本不變,為恒流充電。
根據實驗數據記錄得圖6b所示閉環后Uo、充電電流Io和輸出功率Po曲線,Po最大1.2 kW,在達到1.2 kW前Io基本恒定,充電到接近7 kV時Io改為小電流,Po下降。實驗效果理想。
采用閉環控制后,可實現1.2 kW恒功率輸出,原設計的3 kW電源系統主電路參數均可減小,從而減小變壓器、濾波元件、開關管等體積和重量,在設計其他電源時可減小電路功率等級,對電源的小型化和減輕重量有重要意義。
需注意的是,閉環控制調節開關頻率時,開關頻率有一個限制范圍,需保證滿足IGBT的軟開關。通過觀察恒頻控制時各個充電階段的諧振周期,判斷出諧振周期的變化范圍,根據此變化范圍來確定開關周期的變化范圍,使開關周期大于2倍諧振周期,實現軟開關。
通過實驗發現,恒頻控制時充電后期諧振周期縮小到35μs,諧振正半周時間變化較小(分布電容較小),故末期開關周期必須大于70μs,導通時間大于25μs,取開關周期最小為72 μs,導通時間最小為26μs(導通時間不變),在PI控制過程中需要滿足此限制,故系統需要既調節開關頻率,又調節占空比。開關周期的最大限制可在滿足應用的條件下選擇合適的值。
圖6c示出采用閉環控制后充電到6 kV時的iL和Uo,由圖中iL波形可見充電到6 kV時,諧振電流仍為斷續,諧振正半周大概25μs,滿足軟開關。
6 結論
實際的LC串聯諧振電容充電電源都是LCC串并聯諧振,采用閉環控制策略可改善LCC串并聯諧振電路的性能,提高充電速度及電源利用率,降低電源功率等級,減小電源的體積和重量,適合限制功率,要求小型化的場合。
評論