a一级爱做片免费观看欧美,久久国产一区二区,日本一二三区免费,久草视频手机在线观看

新聞中心

EEPW首頁 > 設計應用 > 理解計算機編程基礎 —— 匯編語言

理解計算機編程基礎 —— 匯編語言

作者: 時間:2024-09-03 來源: 收藏

學習其實就是學高級語言,即那些為人類設計的語言。但是,不理解高級語言,必須通過編譯器轉成二進制代碼,才能運行。學會高級語言,并不等于理解實際的運行步驟。

本文引用地址:http://www.j9360.com/article/202409/462605.htm

640-2.png

計算機真正能夠理解的是低級語言,它專門用來控制硬件。語言就是低級語言,直接描述/控制 CPU 的運行。如果你想了解 CPU 到底干了些什么,以及代碼的運行步驟,就一定要學習語言。

語言不容易學習,就連簡明扼要的介紹都很難找到。下面就是一篇最好懂的匯編語言教程,解釋 CPU 如何執行代碼。

640-3.jpeg

一、匯編語言是什么?

我們知道,CPU 只負責計算,本身不具備智能。你輸入一條指令(instruction),它就運行一次,然后停下來,等待下一條指令。

這些指令都是二進制的,稱為操作碼(opcode),比如加法指令就是00000011。編譯器的作用,就是將高級語言寫好的程序,翻譯成一條條操作碼。

對于人類來說,二進制程序是不可讀的,根本看不出來機器干了什么。為了解決可讀性的問題,以及偶爾的編輯需求,就誕生了匯編語言。

640-4.jpeg

「匯編語言是二進制指令的文本形式」,與指令是一一對應的關系。比如,加法指令00000011寫成匯編語言就是 ADD。只要還原成二進制,匯編語言就可以被 CPU 直接執行,所以它是最底層的低級語言。

二、源起

最早的時候,編寫程序就是手寫二進制指令,然后通過各種開關輸入計算機,比如要做加法了,就按一下加法開關。后來,發明了紙帶打孔機,通過在紙帶上打孔,將二進制指令自動輸入計算機。

為了解決二進制指令的可讀性問題,工程師將那些指令寫成了八進制。二進制轉八進制是輕而易舉的,但是八進制的可讀性也不行。

很自然地,最后還是用文字表達,加法指令寫成 ADD。內存地址也不再直接引用,而是用標簽表示。

這樣的話,就多出一個步驟,要把這些文字指令翻譯成二進制,這個步驟就稱為 assembling,完成這個步驟的程序就叫做 assembler。它處理的文本,自然就叫做 aseembly code。標準化以后,稱為 assembly language,縮寫為 asm,中文譯為匯編語言。

640-5.jpeg

每一種 CPU 的機器指令都是不一樣的,因此對應的匯編語言也不一樣。本文介紹的是目前最常見的 x86 匯編語言,即 Intel 公司的 CPU 使用的那一種。

三、寄存器

學習匯編語言,首先必須了解兩個知識點:寄存器內存模型。

先來看寄存器。CPU 本身只負責運算,不負責儲存數據。數據一般都儲存在內存之中,CPU 要用的時候就去內存讀寫數據。

但是,CPU 的運算速度遠高于內存的讀寫速度,為了避免被拖慢,CPU 都自帶一級緩存和二級緩存?;旧?,CPU 緩存可以看作是讀寫速度較快的內存。

但是,CPU 緩存還是不夠快,另外數據在緩存里面的地址是不固定的,CPU 每次讀寫都要尋址也會拖慢速度。

因此,除了緩存之外,CPU 還自帶了寄存器(register),用來儲存最常用的數據。也就是說,那些最頻繁讀寫的數據(比如循環變量),都會放在寄存器里面,CPU 優先讀寫寄存器,再由寄存器跟內存交換數據。

640-3.png

寄存器不依靠地址區分數據,而依靠名稱。每一個寄存器都有自己的名稱,我們告訴 CPU 去具體的哪一個寄存器拿數據,這樣的速度是最快的。有人比喻寄存器是 CPU 的零級緩存。

四、寄存器的種類

早期的 x86 CPU 只有8個寄存器,而且每個都有不同的用途?,F在的寄存器已經有100多個了,都變成通用寄存器,不特別指定用途了,但是早期寄存器的名字都被保存了下來。

· EAX

· EBX

· ECX

· EDX

· EDI

· ESI

· EBP

· ESP

上面這8個寄存器之中,前面七個都是通用的。ESP 寄存器有特定用途,保存當前 Stack 的地址(詳見下一節)。

640-4.png

我們常??吹?32位 CPU、64位 CPU 這樣的名稱,其實指的就是寄存器的大小。32 位 CPU 的寄存器大小就是4個字節。

五、內存模型:Heap

寄存器只能存放很少量的數據,大多數時候,CPU 要指揮寄存器,直接跟內存交換數據。所以,除了寄存器,還必須了解內存怎么儲存數據。

程序運行的時候,操作系統會給它分配一段內存,用來儲存程序和運行產生的數據。這段內存有起始地址和結束地址,比如從0x10000x8000,起始地址是較小的那個地址,結束地址是較大的那個地址。

640-12.png

程序運行過程中,對于動態的內存占用請求(比如新建對象,或者使用malloc命令),系統就會從預先分配好的那段內存之中,劃出一部分給用戶,具體規則是從起始地址開始劃分(實際上,起始地址會有一段靜態數據,這里忽略)。

舉例來說,用戶要求得到10個字節內存,那么從起始地址0x1000開始給他分配,一直分配到地址0x100A,如果再要求得到22個字節,那么就分配到0x1020。

640-6.png

這種因為用戶主動請求而劃分出來的內存區域,叫做 Heap(堆)。它由起始地址開始,從低位(地址)向高位(地址)增長。Heap 的一個重要特點就是不會自動消失,必須手動釋放,或者由垃圾回收機制來回收。

六、內存模型:Stack

除了 Heap 以外,其他的內存占用叫做 Stack(棧)。簡單說,Stack 是由于函數運行而臨時占用的內存區域。

640-8.png

請看下面的例子。

int main() 
{
   int a = 2;
   int b = 3;
}

上面代碼中,系統開始執行main函數時,會為它在內存里面建立一個幀(frame),所有main的內部變量(比如ab)都保存在這個幀里面。main函數執行結束后,該幀就會被回收,釋放所有的內部變量,不再占用空間。

如果函數內部調用了其他函數,會發生什么情況?

int main() 
{
  int a = 2;
  int b = 3;
  return add_a_and_b(a, b);
}

上面代碼中,main函數內部調用了add_a_and_b函數。執行到這一行的時候,系統也會為add_a_and_b新建一個幀,用來儲存它的內部變量。也就是說,此時同時存在兩個幀:mainadd_a_and_b一般來說,調用棧有多少層,就有多少幀。

640-9.png

等到add_a_and_b運行結束,它的幀就會被回收,系統會回到函數main剛才中斷執行的地方,繼續往下執行。通過這種機制,就實現了函數的層層調用,并且每一層都能使用自己的本地變量。

所有的幀都存放在 Stack,由于幀是一層層疊加的,所以 Stack 叫做棧。生成新的幀,叫做"入棧",英文是 push;棧的回收叫做"出棧",英文是 pop。Stack 的特點就是,最晚入棧的幀最早出棧(因為最內層的函數調用,最先結束運行),這就叫做"后進先出"的數據結構。

每一次函數執行結束,就自動釋放一個幀,所有函數執行結束,整個 Stack 就都釋放了。

640-6.jpeg

640-7.jpeg

Stack 是由內存區域的結束地址開始,從高位(地址)向低位(地址)分配。比如,內存區域的結束地址是0x8000,第一幀假定是16字節,那么下一次分配的地址就會從0x7FF0開始;第二幀假定需要64字節,那么地址就會移動到0x7FB0。

640-10.png

七、CPU 指令

7.1 一個實例

了解寄存器和內存模型以后,就可以來看匯編語言到底是什么了。下面是一個簡單的程序example.c

int add_a_and_b(int a, int b) {

  return a + b;
}
int main() {
  return add_a_and_b(2, 3);
}

gcc 將這個程序轉成匯編語言。

$ gcc -S example.c

上面的命令執行以后,會生成一個文本文件example.s,里面就是匯編語言,包含了幾十行指令。這么說吧,一個高級語言的簡單操作,底層可能由幾個,甚至幾十個 CPU 指令構成。CPU 依次執行這些指令,完成這一步操作。

example.s經過簡化以后,大概是下面的樣子。

_add_a_and_b:
  push   %ebx
  mov    %eax, [%esp+8]
  mov    %ebx, [%esp+12]
  add    %eax, %ebx
  pop    %ebx
  ret  
_main:
  push   3
  push   2
  call   _add_a_and_b
  add    %esp, 8
  ret

可以看到,原程序的兩個函數add_a_and_bmain,對應兩個標簽_add_a_and_b_main。每個標簽里面是該函數所轉成的 CPU 運行流程。

每一行就是 CPU 執行的一次操作。它又分成兩部分,就以其中一行為例。

push   %ebx

這一行里面,push是 CPU 指令,%ebx是該指令要用到的運算子。一個 CPU 指令可以有零個到多個運算子。

下面我就一行一行講解這個匯序,建議讀者最好把這個程序,在另一個窗口拷貝一份,省得閱讀的時候再把頁面滾動上來。

7.2 push 指令

根據約定,程序從_main標簽開始執行,這時會在 Stack 上為main建立一個幀,并將 Stack 所指向的地址,寫入 ESP 寄存器。后面如果有數據要寫入main這個幀,就會寫在 ESP 寄存器所保存的地址。

然后,開始執行第一行代碼。

push   3

push指令用于將運算子放入 Stack,這里就是將3寫入main這個幀。

雖然看上去很簡單,push指令其實有一個前置操作。它會先取出 ESP 寄存器里面的地址,將其減去4個字節,然后將新地址寫入 ESP 寄存器。

使用減法是因為 Stack 從高位向低位發展,4個字節則是因為3的類型是int,占用4個字節。得到新地址以后, 3 就會寫入這個地址開始的四個字節。

push   2

第二行也是一樣,push指令將2寫入main這個幀,位置緊貼著前面寫入的3。這時,ESP 寄存器會再減去 4個字節(累計減去8)。

640-11.png

7.3 call 指令

第三行的call指令用來調用函數。

call   _add_a_and_b

上面的代碼表示調用add_a_and_b函數。這時,程序就會去找_add_a_and_b標簽,并為該函數建立一個新的幀。

下面就開始執行_add_a_and_b的代碼。

push   %ebx

這一行表示將 EBX 寄存器里面的值,寫入_add_a_and_b這個幀。這是因為后面要用到這個寄存器,就先把里面的值取出來,用完后再寫回去。

這時,push指令會再將 ESP 寄存器里面的地址減去4個字節(累計減去12)。

7.4 mov 指令

mov指令用于將一個值寫入某個寄存器。

mov    %eax, [%esp+8]

這一行代碼表示,先將 ESP 寄存器里面的地址加上8個字節,得到一個新的地址,然后按照這個地址在 Stack 取出數據。根據前面的步驟,可以推算出這里取出的是2,再將2寫入 EAX 寄存器。

下一行代碼也是干同樣的事情。

mov    %ebx, [%esp+12]

上面的代碼將 ESP 寄存器的值加12個字節,再按照這個地址在 Stack 取出數據,這次取出的是3,將其寫入 EBX 寄存器。

7.5 add 指令

add指令用于將兩個運算子相加,并將結果寫入第一個運算子。

add    %eax, %ebx

上面的代碼將 EAX 寄存器的值(即2)加上 EBX 寄存器的值(即3),得到結果5,再將這個結果寫入第一個運算子 EAX 寄存器。

7.6 pop 指令

pop指令用于取出 Stack 最近一個寫入的值(即最低位地址的值),并將這個值寫入運算子指定的位置。

pop    %ebx

上面的代碼表示,取出 Stack 最近寫入的值(即 EBX 寄存器的原始值),再將這個值寫回 EBX 寄存器(因為加法已經做完了,EBX 寄存器用不到了)。

注意,pop指令還會將 ESP 寄存器里面的地址加4,即回收4個字節。

7.7 ret 指令

ret指令用于終止當前函數的執行,將運行權交還給上層函數。也就是,當前函數的幀將被回收。

ret

可以看到,該指令沒有運算子。

隨著add_a_and_b函數終止執行,系統就回到剛才main函數中斷的地方,繼續往下執行。

add    %esp, 8

上面的代碼表示,將 ESP 寄存器里面的地址,手動加上8個字節,再寫回 ESP 寄存器。這是因為 ESP 寄存器的是 Stack 的寫入開始地址,前面的ret操作已經回收了4個字節,這里再回收8個字節,等于全部回收。

ret

最后,main函數運行結束,ret指令退出程序執行。

八、參考鏈接

· Introduction to reverse engineering and Assembly, by Youness Alaoui

· x86 Assembly Guide, by University of Virginia Computer Science

聲明:本文素材來源網絡,版權歸原作者所有。如涉及作品版權問題,請與我聯系刪除。



關鍵詞: 計算機 編程 匯編

評論


相關推薦

技術專區

關閉