安全芯片中密碼算法的多IP核集成方法
信息社會中,基于密碼算法設計的安全芯片,能夠為用戶的敏感信息提供有效的機密性與完整性保護。信息化的不斷深入使得人們對信息安全服務的需求呈現使用簡單化、功能多樣化、高度集成化等趨勢。這要求安全芯片在單一的硬件平臺上,最大限度地提供多樣的密碼服務,并且具備標準統一的對外服務接口。功能多樣化與高度集成化,已經成為當前以及今后安全芯片設計的必然要求。
安全芯片的功能多樣化設計要求可以由軟件方式實現,也可通過集成多個硬件密碼算法IP核完成。由于密碼算法IP核集成安全性較高,在向外提供密碼服務時,數據處理速度較快,且不占用主控制器運算資源,相對于軟件實現方法,更適合于安全芯片的實際應用需要。因此,在已有的多功能安全芯片設計中,一般采取多密碼算法IP核集成,實現安全芯片功能多樣化。
1 密碼算法多IP核集成要求及方法
在單一硬件平臺上集成多個密碼算法IP核,需要滿足三條基本設計要求:
第一,硬件平臺運行頻率與IP核運算頻率的不一致要求。通常情況下,設計者在進行IP核實現時,出于數據處理速度的需要,一般都會盡量提高IP核運算頻率,以實現對數據的高速處理。要求硬件平臺與IP核具備同樣的時鐘頻率是不現實的,因為硬件平臺的運行頻率往往依賴于這一平臺所采用的主控制器運行頻率,而要提高主控制器的運行頻率,以達到與不同IP核運算頻率一致,不具有實際可行性。在具體實現多IP核集成時,密碼算法IP核運算頻率會遠高于硬件平臺的運行頻率,各IP核的運算頻率也不盡相同。因此,要實現IP核與硬件平臺掛接集成,需首先解決硬件平臺與IP核的時鐘不一致問題。
第二,硬件平臺與IP核、不同IP核之間處理數據位寬的不一致要求。同樣是出于提高數據處理速度考慮,設計者在設計IP核時,一般采用較大的數據位寬。實現不同數據位寬的轉換,是IP核能否正確處理數據的基本條件。
第三,能夠靈活調用不同IP核的功能,對目標數據進行相應處理。單一硬件平臺與多IP核的掛接集成,需要相應機制來最終實現對不同IP核功能的靈活調用。通過IP功能調用機制,硬件平臺可以完成多個IP核對不同數據的同步運算處理,也可以單獨調用某一IP核進行數據處理。
基于上述多IP核集成設計要求,當前文獻中已有的實現方法主要有:
方法一,使用第三方專用系統總線,實現多IP核集成。采用第三方專用系統總線,將不同IP核與總線掛接,實現多IP核集成。其優點在于:專用系統總線功能強大,支持不同頻率、不同端口的IP核集成,能夠進行多個IP核對不同數據的同步運算處理,便于系統設計與實現。但由于需要采用第三方總線,因而芯片的研發成本會相應增加。
方法二,為每個IP核配備專用雙端口數據存儲器,實現多IP核集成。采用配備雙端口存儲器可以滿足硬件平臺與IP核異頻處理要求,能夠實現不同數據位寬之間的轉換,能夠進行多個IP核對不同數據的同步運算處理。在進行系統前端設計時,設計簡單且實現方便。但由于密碼服務是一個有序的過程,為每個IP核均配備專用存儲區,會造成系統資源浪費,且極大地增加了芯片后端設計中的布局布線難度。
在分析上述兩種集成方法基礎上,本文基于方法二,給出了一種改進的多IP核集成設計方法。方法采用IP橋接技術,將同一雙端口存儲器與不同IP核進行動態重構,實現多IP核集成。與方法一相比,采用IP橋接技術實現多IP核集成可以顯著減少芯片的研發成本;與方法二相比,改進方法不僅能夠有效整合芯片內部資源,還可以降低系統功耗,提高芯片的整體性能。
2 IP橋接技術設計原理與具體實現
IP橋接技術的核心是IP橋(IP_bridge)的設計與實現。IP_bridge是主控制器與各IP核協處理器的連接橋梁,同時也是各IP核協處理器與專用雙端口存儲器的連接橋梁。
2.1 IP橋接技術設計原理
IP_bridge是IP橋接技術設計與實現的核心,是主控制器與各IP核協處理器,以及各IP核協處理器與專用雙端口存儲器之間的連接橋梁。為實現這一目的,IP_bridge需完成以下功能:IP核選擇參數譯碼;不同IP核與同一數據處理區的動態可重構;根據IP選擇參數,配置選定IP核控制指令與運行時鐘。
在IP_bridge滿足上述設計要求的前提下,IP橋接技術具體設計原理可作如下表述:將各IP核與IP_bridge、dual_ramx(雙端口存儲區)整合為系統的一個密碼算法IP核重構模塊,模塊輸入為系統輸出數據、地址、讀/寫使能、系統時鐘與IP時鐘、IP控制指令與IP選擇參數,輸出為 IP核處理完成數據與協處理器運行狀態標識。
評論