兩類高速ADC之間選擇:有緩沖和無緩沖
“有緩沖”或“無緩沖”
本文引用地址:http://www.j9360.com/article/186295.htm考慮輸入阻抗的影響時,設計人員一般可以在兩類高速ADC之間選擇:有緩沖和無緩沖(即采用開關電容)。雖然有許多不同的轉換器拓撲結構可供選擇,但本文討論的應用僅涉及流水線架構。
常用的CMOS開關電容ADC無內部輸入緩沖器。因此,其功耗遠低于緩沖型ADC。外部前端直接連接到ADC的內部開關電容采樣保持(SHA)電路,這帶來兩個問題。
第一,當ADC在采樣與保持兩種模式之間切換時,其輸入阻抗會隨頻率和模式而變化。第二,來自內部采樣電容和網絡的電荷注入會將少量信號(與高頻成分混合,如圖1所示)反射回前端電路和輸入信號,這可能導致與轉換器模擬輸入端相連的元件(有源或無源)發生建立(settling)錯誤。
圖1:此圖反映了內部采樣電容的時域電荷注入(單端)與頻域電荷注入的對比關系。
通常,當頻率較低時(《100MHz),這類轉換器的輸入阻抗非常高(數千Ω左右);當頻率高于200MHz時,差分輸入阻抗跌落至大約200Ω。輸入阻抗的虛部(即容性部分)也是如此,低頻時的容抗相當高,高頻時逐漸變小到大約1-2pF。“匹配”這種輸入結構是個極具挑戰性的設計問題,特別是當頻率高于100MHz時。
輸入端采用差分結構很重要,尤其是對于頻域設計。差分前端設計能夠更好地對電荷注入進行共模抑制,并且有助于設計。
采用帶輸入緩沖的轉換器更便于設計。但不利的一面是這類轉換器的功耗更高,因為緩沖器必須設計得具有高線性和低噪聲特性。輸入阻抗通常規定為固定的差分R||C阻抗。它由一個晶體管級進行緩沖,該級以低阻抗驅動轉換過程,因此顯著減小了電荷注入尖峰和開關瞬變。
與開關電容型ADC不同,輸入終端在轉換過程的采樣和保持階段幾乎無變化。因此,相比于無緩沖型ADC,其驅動電路的設計容易得多。圖2為緩沖型和無緩沖型ADC的內部采樣保持電路的結構簡圖。
圖2: 所示是無緩沖(a)和有緩沖(b)高速流水線ADC采樣和保持電路的比較。
轉換器的選擇可能很難,但如今的大部分設計都力求更低功耗,因此設計人員往往采用無緩沖型轉換器。如果線性指標比功耗更重要,則通常選用緩沖型轉換器。應當注意,無論選擇何種轉換器,應用的頻率越高,則前端設計就越困難。單靠選擇緩沖型轉換器并不能解決所有問題。不過在某些情況下,它可能會降低設計復雜性。
更多資訊請關注:21ic模擬頻道
評論