a一级爱做片免费观看欧美,久久国产一区二区,日本一二三区免费,久草视频手机在线观看

新聞中心

EEPW首頁 > 模擬技術 > 設計應用 > 基于S波段低噪聲放大電路設計

基于S波段低噪聲放大電路設計

作者: 時間:2010-04-27 來源:網絡 收藏

0 引 言

近年來,國內無線通信系統的快速發展,使得微波頻率在衛星通信中引用越來越廣泛。通信距離越來越遠、靈敏度越來越高對系統的性能提出了更高的要求,通信系統不但要求放大微弱信號中有用信號,同時要求具有較小的噪聲系數。所以對于系統來說,電路模塊很大程度上決定了系統的整體指標。

本文引用地址:http://www.j9360.com/article/188224.htm

1 電路的設計

1.1 技術指標

低噪聲放大電路(LNA)的設計中主要考慮噪聲系數(NF)、增益(Gain)、動態范圍和穩定性。這里設計的要求達到指標要求如表1所示。



在此使用安捷倫公司生產的低噪聲放大管ATF-54143是基于E-PHEMT的新型工藝。E-PHEMT工藝與傳統的工藝不同,傳統的Depletion-modepHEMT低噪聲放大器在門電壓(Vgs=0)時溝道電流(Id)達到一個飽和值(Idss);而E-pHEMT在偏置電壓為0時沒有傳導電流,Vgs=0,Id=0不需要像損耗型加負電壓,增加的負電壓不但增加系統花費,而且占用電路板有用空間和一些額外的設計需要。

表2為ATF-54143低噪聲放大電路中心工作頻率為3.9 GHz時,直流偏置工作點的增益和噪聲系數。為了使低噪聲放大電路的參數達到表1中的各項指標,通過對表2折中考慮,直流偏置工作點選擇Vds=3 V,Ids=60 mA。



1.2偏置電路及匹配網絡的設計

ATF-54143元件的直流偏置工作電壓以電阻R1和R2組成的分壓器實現(見圖1),分壓電路的電壓取自漏極電壓,并為電路提供電壓負反饋以維持漏極電流的恒定,R3為漏柵極限壓電阻。R1~R3可通過式(1) 計算:



式中:Ids為漏極電流;IBB是流經R1和R2組成的電壓分配網絡的電流。由VDD=5 V,Vds=3 V,Ids=60 mA,Vgs=0.6 V,可求得R1=1 200 Ω,R2=300 Ω,R3=25 Ω。


ATF-54143元件提供的增益強烈的依賴其在輸入端和輸出端分別所加載的源和負載阻抗。匹配電路的作用就是要保證在工作頻率范圍能達到所希望的性能指標。因此設計匹配電路是放大器設計的主要任務,通過Smith圓圖將放大器源端阻抗與輸入/輸出端進行網絡匹配設計。在設計低噪聲放大器的匹配電路時,輸入匹配網絡是為獲得最小噪聲而設計的最佳噪聲匹配網絡,而輸出匹配采用共軛阻抗匹配以獲得最大功率。在此采用π型阻抗匹配網絡,L1L2/C1和L3L4/C4組成輸入/輸出端的阻抗匹配電路。

提高LNA性能還可以通過調節放大器的源端電感L5和L6實現,L5和L6實際上是源端與地之間非常短的傳輸線,作為電路的串聯負反饋,在頻率較高時其反饋對電路的增益、穩定性和回波損耗有著較大的影響。

1.3 S參數和噪聲系數的仿真分析

本文設計的低噪聲放大電路使用的介質板為ARLONG 25FR,厚度為0.5 mm。ATF-54143的模塊是一個Touchstone格式的雙端口S參數,ADS模擬軟件中Sparams_wNoise模板可以實現低噪聲放大電路的模擬仿真。通過計算估計匹配電路的初始參數,然后使用ADS仿真軟件進行優化設計得到最佳設計方案。仿真結果如圖2,圖3所示,電路增益大于13 dB,輸入/輸出端反射系數在-10 dB左右。在ADS仿真優化中發現L2和GATE之間的微帶線的長度不能太長,太長會增加噪聲系數和入射端反射系數;DRAIN和L3之間的微帶線長度小于1 mm并逐漸減少時輸出端反射系數增加,當長度大于1 mm并逐漸增大時輸出端反射系數S22會減小,但輸入端的反射系數S11會變差。可以看出高頻時微帶的長度對電路特性有較大影響。

高頻時由于微波晶體管的增益隨著頻率升高而降低,所以需要在工作頻率的高端共軛匹配和低端校正。圖2可看出3.8~4 GHz頻率范圍內,增益波動只有0.5 dB。


上一頁 1 2 下一頁

評論


相關推薦

技術專區

關閉