基于CAN總線的雷達網絡測控系統設計
1引言
本文引用地址:http://www.j9360.com/article/163527.htm隨著測控技術的快速發展,現代雷達系統對于多雷達高精度協同測控跟蹤能力的需求越來越高。然而,現役的大多數雷達并不具有這樣的功能。基于某型號雷達,我們開發了基于CAN總線的雷達網絡測控系統。經過對雷達加裝該系統,我們構建了雷達局域測控網絡,實現了基于CAN總線網絡的雷達間目標,狀態等相關信息的共享。利用這些信息,網絡中各雷達可以進行相互配合工作,極大地提高了雷達的探測與協同能力。
2雷達網絡測控測控系統的基本結構與原理
從本質上看,我們設計的雷達網絡測控系統,屬于主從式網絡測試控制系統。與數據網絡相比,控制網絡具有數據幀短、數據交換頻繁、有實時約束等特點。同時雷達本身工作時電磁環境復雜,相對距離較遠,這都對采用的總線形式提出了較高的要求。
近20年來,控制網絡獲得迅速發展,特別是作為其主流的現場總線技術已形成了一系列國際標準,CAN總線是其中一種比較有影響的現場總線標準。CAN總線是一種多主方式的串行通訊總線,有高的位速率,高抗電磁干擾性,而且能夠檢測出產生的多種錯誤。當信號傳輸距離達到10Km時,CAN仍可提供高達50Kbit/s的數據傳輸速率。同時CAN總線具有很高的實時性能,在工業控制、安全防護等領域中得到了廣泛應用。因此我們選擇CAN總線構建網絡。圖1與圖2分別顯示了雷達網絡測控系統與CAN總線的連接關系及各雷達間互連的拓撲結構。

圖1網絡測控系統與CAN總線的連接

圖2雷達網絡拓撲結構
2.2系統原理
同其他網絡測控系統一樣,雷達網絡測控系統的主要工作基礎是對于相關數據的采集與共享。在這個網絡中,依據實際的工作環境與實際情況的需要,每個雷達既可以作為一個獨立單元工作,也可以作為網絡的節點工作。當雷達成為網絡的一個節點工作時,其可以依據網絡中共享的數據,與網內的其他雷達共同協同跟蹤工作。
在一般情況下,網絡中的雷達作為獨立的節點進行工作,此時網絡中的每個雷達是對等的。當出現特殊目標或其他需要多雷達對同一目標進行協同跟蹤的情況下,雷達的操作手可以通過雷達網絡測控系統向網絡發出進入網絡工作狀態的指令。網內其他雷達收到指令后,操作手可以依據該雷達的具體情況選擇繼續獨立工作或進入網絡協同工作。進入網絡的雷達之間為主從關系,發出指令與數據的雷達為主雷達,接收共享數據的雷達為從雷達。處于網絡狀態工作的雷達,也可以隨時退出網絡工作。
3系統硬件結構
由以上對系統原理的分析可以看出,該系統的設計關鍵技術主要包括:雷達及目標信息的獲取與共享,目標數據的計算、校正及基于校正數據的目標跟蹤。系統的硬件設計亦基于此進行。
圖3給出了系統的硬件設計框圖。從框圖可以看出,該系統主要由單片機模塊,雷達接口模塊,通信與控制模塊,軸角轉換模塊及人機交互接口組成。
系統單片機模塊采用Winbond公司的高性能51兼容內核單片機W77E58實現系統控制。該單片機具有兩個相互獨立的串口,便于與外設通信,同時芯片支持高達40M的時鐘且具有倍頻模式,能夠滿足目標信息與控制信息的解算要求。
雷達接口模塊通過信號轉接電路從雷達中截取相關信號送至接口信號處理電路。其中,雷達的數字信號主要通過CPLD處理。我們使用了Altra公司的CPLD芯片EPM7128。其第一個作用是作為信號多路復用器與接口緩沖器。當控制系統狀態轉換時,其依據雷達的狀態,切換形成不同的數據總線開關狀態,同時將來自雷達及單片機的數據鎖存或緩沖,使雷達與單片機能交換正確的數據。其第二個功能是產生接口邏輯與控制系統的控制邏輯。利用來自雷達的時鐘信號、各種時序信號與狀態信號,產生接口控制信號,控制接口的數據交換與狀態轉換,同時依據單片機發來的地址與控制信號,合成控制系統的各種控制邏輯。

圖3系統硬件框圖
通信與控制模塊是處理后的信息與本雷達及其他雷達交互的接口??刂葡到y的狀態及目標數據等信息由單片機串口輸出后,通過MAX232變換送至人機交換模塊顯示,來自人機接口的控制信息同樣通過該接口下行至單片機。控制系統與CAN總線的互連同樣經過RS-232接口,并由CAN通信模塊完成RS-232協議與CAN協議的轉換,從而實現與遠端雷達的長距離、實時通信。經過控制系統解算的目標距離信息通過CPLD被雷達獲取,目標的角度信息則通過控制模塊完成D/A變換,電壓隔離與平滑等處理,送至雷達的天控系統,直接推動雷達完成對目標的跟蹤。
評論