基于雙處理器的點焊控制系統的硬件設計
摘要:針對點焊的控制特點,設計了一種基于雙處理器的點焊控制系統。在該系統中,DSP模塊負責智能控制程序運算,MCU模塊負責進行人機對話,而信號的輸入輸出則由獨立的ADIO模塊負責。模擬試驗表明,該硬件系統滿足工作要求。
本文引用地址:http://www.j9360.com/article/161735.htm關鍵詞:點焊控制 雙處理器 硬件設計
點焊是將焊件裝配成搭接接頭,并壓緊在兩電極之間,利用電流通過焊件時產生的電阻熱熔化母材金屬,冷卻后形成焊點的一種電阻焊方法。其通電加熱時間一般為幾至幾十周波(一周波為0.02s),而電流有效值一般為幾至幾十KA。
點焊是一個高度非線性、存在多變量耦合作用和大量隨機不確定因素的過程,其形核處于封閉狀態,時間極短,特征信號提取困難,控制難度較大。
1 設計思想和總體方案
近年來,智能控制技術正被積極地引入點焊控制研究領域,但由于其算法高度復雜、計算密集,因此對系統的實時性要求越來越高。另一方面,DSP(數字信號處理器)技術的蓬勃發展,使得其在工業控制領域的應用越來越廣泛。因此在本設計中,使用DSP作核心處理器,充分發揮其運算速度快的優勢,并嘗試利用多種智能控制算法對點焊進行質量控制,以提高焊點的質量和可靠性。
在實際工作中,點焊需要設置的參數較多,操作者不得不依賴于各種手冊、說明書和/或專家編制的工藝文件來進行設備;而且在選定參數之后,往往還需要通過一系列的旋鈕、按鈕等開關進行設置,操作復雜,容易造成混亂。因此在本設計中,應用MCU(單片機)實現人機對話功能。通過鍵盤輸入和液晶顯示,既充分體現了數字化控制的優勢,也有助于實現點焊專家系統。
由于點焊系統工作在大電流、強磁場的環境下,因此控制系統的抗干擾問題尤為重要,且DSP的工作頻率高,所以將信號的輸入、輸出部分和DSP、MCU模塊分開,設計獨立的ADIO模塊。
系統的總體方案如圖1所示。
2 DSP模塊的設計
本系統選用了DSK-TMS320VC5402芯片作控制核心。DSP是TI公司提供的一套標準的DSP開發平臺,其目的是令使用者能較能地開發和應用基于DSP的系統,為最終的目標系統提供軟、硬件設計參考模板。有關DSK的具體說明請參閱有關的技術資料。
DSK提供了存儲器接口和外圍設備接口兩列擴展接口。根據“灰箱法”的設計思想,不用完全理解DSK的內部原理,只需在對其整體有一個基本了解的基礎上,選擇可能要用到的信號即可。因此專門設計了一塊轉接板,作為外圍電路與DSP之間通訊的橋梁。從DSP中引出了26個信號,如表1所示。
表1 轉接板信號
信號名 | 作 用 |
電源與地信號 | |
+5V | 由DSK取出,使整個系統同時上電 |
GND | 從DSK發出,保持系統的地信號相同 |
用于A/D電路的信號 | |
ADEN | 用作TLV2544片選和使能信號 |
X_FSX0 | 發送同步幀,使A/D轉換開始 |
X_DX0 | 發送MCBSP對TLV2544的控制指令 |
X_FSR0 | 接收X_FSX0信號,使DSK和TLV2544保持同步 |
X_CLKX0 | 發送時鐘頻率信號給TLV2544 |
X_CLKR0 | 接收X_CLKX0時鐘,使DSK和TLV2544保持時鐘同步 |
X_DR0 | 接收TLV2544轉換好的數字數據 |
用于I/O電路的信號 | |
INPUT | 用作允許輸入信號 |
OCLOCK | 用作輸出鎖存信號 |
OUTPUT | 用作允許輸出信號 |
X_D[07] | 接入數據總線,傳輸I/O數據 |
用于MPU模塊的控制信號 |
3 ADIO模塊的設計
該模塊包括A/D轉換、輸入、輸出三部分電路,它們分別負責模擬信號的輸入和轉換以及開關信號的輸入和控制信號的輸出。
3.1 A/D轉換電路
A/D轉換器的選取主要考慮所采集的模擬信號的數量、精度及與DSP的速度匹配等,綜合考慮后,選用TI公司生產的12位4通道高速AD-TLV2544。
本設計中A/D轉換電路分為三部分:第一部分由5.1V的穩壓二極管又濾波電容103組成,構成模擬輸入部分;第二部分由TLV2544組成,完成A/D轉換;第三部分由八相緩沖器74LS244組成,完成DSP與TLV2544之間的通訊,如圖2所示。
A/D轉換電路的工作是由DSP的多通道緩沖串口MCBSP來控制的。MCBSP通過其數據輸出口DX0發送控制字到TLV2544的SDI口,該控制字為16位,前4位是指令位。如果TLV2544接收到的前四位是0XA,那么接下來的12位就會被當作控制字譯碼;相反,如果前4位接收到的是0XE,那么ADC將繼續輸出FIFO的內容到SDO中。其中,SDI和SDO分別是TLV2544的控制信號輸入口和已轉換好的數字信號輸出口。當TLV2544按DSP發出的控制字轉換到一定時候(如FIFO堆棧滿)時,則發出INT信號通知DSP接收。DSP接收到INT信號后,經X_DR0口讀入TLV2544已轉換好的串行數據。
3.2 輸入和輸出電路
為了抵抗電氣干擾和高壓電擊,在本設計中,輸入和輸出電路均采用光隔PC817傳遞邏輯信號,實現電氣隔離。另外還使用反相器74HC14對傳輸信號進行整形,利用施密特特性消除毛刺干擾,提高信號傳輸的抗干擾能力。輸入和輸出電路與DSP的接口如圖3所示。
在輸入電路中使用了緩沖器74LS244,以增強線驅動能力,如圖3所示。假設第二路輸入為低電平,則光隔不導通,A2也為低電平。DSP要讀取它的時候,先給輸入一個低電平,然后用02H(即00000010)去線與,判斷Y2的值是否為1,如果不為1則不讀入,反之讀入。其它輸入也是這樣來處理。
因為輸出的開關量需要保持開或關的狀態,所以在輸出電路中使用了鎖存器74LS373,進行緩沖和鎖存,如圖3所示。當輸出由低電平變為高電平時候,DSP將數據由X_D[0~7]送到鎖存器的輸入端,然后再給OCLOCK一個低電平脈沖,數據即被鎖存在鎖存器的輸出端。假如Q0=1,則經反相器后變為低電平,光隔導通;反之,光隔不導通,從而實現了開關量的數據輸出。
評論