OFDM系統中DAGC的應用研究及FPGA實現
摘 要:介紹IDFT/DFT可精度在OFDM系統基帶解調中的重要性,分析定點化DFT輸入功率對其精度的影響,并在此基礎上采用數字自動增益控制技術用于DFT前端,以解決過大輸入信號動態范圍所造成的DFT輸出信噪比惡化的問題。理論分析、Matlab仿真結果以及FPGA實現結果表明,該方法具有可行性、實時性和易實現性,可使DFT輸出信噪比達到最佳范圍,以滿足0FDM系統基帶解調的要求;在較大輸入功率情況下,采用DAGc技術的防溢出方法和經典DFT防溢出方法相比,前者使得DFT輸出信噪比提高24 dB。
關鍵詞:OFDM;離散傅立葉變換;溢出誤差;數字自動增益控制;FPGA
O 引 言
隨著各種FFT算法的出現,DFT在現代信號處理中起著越來越重要的作用。在B3G和4G移動通信中所采用的0FDM技術,更是以IDFT/DFT來進行OFDM調制和解調制,IDFT/DFT的精度直接影響基帶解調的性能。
在硬件實現中,通常影響定點化FFT算法精度的有量化誤差、舍入誤差和溢出誤差。一旦決定了量化方式和數據位寬后,量化誤差和舍入誤差都是可估計的,而溢出誤差則隨著輸入信號功率的增大而急劇增加,造成SNR嚴重惡化。
中射頻接收時,通常使用AAGc和DAGC來改善ADC正常工作的動態范圍。同理,由于實現高精度定點化FFT算法的難度和成本較高,本文將采用DAGC技術調整DFT輸入功率,以降低DFT的實現負擔、增加DFT的實現精度、減少DFT的實現位寬。
1 DFT輸入功率范圍分析
B3G和4G移動通信系統中采用的OFDM技術以OFDM符號為單位進行調制解調,該類系統中高層的子載波分配機制,可以使各個OFDM符號幅度變化較其他通信系統大得多。因此,OFDM符號在接收端中射頻進行放大后,傳至基帶用DFT進行子載波解調,此時的符號功率往往有著較大的動態范圍。針對本文關注的DFT溢出誤差,該部分將推導DFT所能接收的最大輸入信號功率。
復隨機序列z[n]=Re(z[n])+jIm(b[n])(n∈[0,N一1])的DFT正變換表示為:
考慮最極端的一個Z[k],即每一個z[n]乘以旋轉因子WknN后,都旋轉角θ至Re正半軸成為z’[n],如圖1所示。在這種情況下,定義:
則當虛部為Im(Z[k])=0時,實部Re(Z[k])(k∈[0,(n-1)]的模平方滿足:
其中:N為DFT點數,以上推導也可由旋轉至Re負半軸,Im正或負半軸得到。因此,所有Z[k]的實部和虛部的模平方必定都小于或等于式(3)所得結果。
本文僅討論1 024點復隨機序列DFT,采用32 b存儲DFT結果,高16 b存實部,低16 b存虛部,兩個16 b的最高位均為符號位,為了保證DFT后的每一個點都不溢出,則平均功率W,需要滿足:
經典的防止DFT溢出的辦法,通常是將輸入信號的模調整至所允許的最大輸出信號模的1/N,N為DFT點數,同樣針對以上情況,采用經典模調整方式的平均功率僅為Ws/1 024。
評論