a一级爱做片免费观看欧美,久久国产一区二区,日本一二三区免费,久草视频手机在线观看

新聞中心

EEPW首頁 > 手機與無線通信 > 設計應用 > 數字接收機中高性能ADC和射頻器件的動態性能要求

數字接收機中高性能ADC和射頻器件的動態性能要求

作者: 時間:2011-07-06 來源:網絡 收藏

摘要:基站系統(BTS)需要在符合各種不同標準的同時滿足信號鏈路的指標。本文介紹了一些信號鏈路,例如:高,可變增益放大器,混頻器和本振,詳細介紹了它們在典型的基站中的使用,能夠滿足基站對高、高截點和低噪聲的

大多對其采用的能模-數轉換器()及模擬都較高。例如,蜂窩基站要求有足夠的范圍,以處理較大的干擾信號,從而把電平較低的有用信號解調出來。Maxim的15位65Msps模數轉換器MAX1418或12位65Msps模數轉換器MAX1211配以2GHz的MAX9993或900MHz的MAX9982集成混頻器,即可為的兩級關鍵電路提供出色的動態特性,此外,Maxim的中頻(IF)可調增益放大器(DVGA) MAX2027和MAX2055能夠在許多系統中提供較高的三階輸出截點(OIP3),并滿足系統所需要的增益調節范圍。

蜂窩基站(BTS:基站收發器)由多個不同的硬件模塊組成,其中之一就是完成RF接收(Rx)及發送(Tx)功能的收發器(TRx)模塊。在老式模擬AMPS及TACS BTS中,一個收發器只能用于處理一路全雙工Rx和Tx RF載波,若要實現要求的呼叫覆蓋率就需要很多個收發器才能提供足夠的載波。如今在全球范圍內,模擬技術已被CDMA和WCDMA所取代,歐洲也已在10年前就采用了GSM。在CDMA中,多個主叫用戶使用同一個RF頻率,這樣一個收發器就可同時處理多個主叫用戶的信號。截至目前已有多種CDMA和GSM的設計方案,BTS制造商也一直致力于探索可降低成本和功耗的方法,對單載波解決方案進行優化或開發多載波接收機就是行之有效的方案。圖1是BTS設備常用的欠采樣接收機的結構框圖。

圖1. 欠采樣接收機結構框圖
圖1. 欠采樣接收機結構框圖

圖1中,Maxim的2GHz MAX9993和900MHz MAX9982混頻器可為許多設計提供所需的增益和線性度,而且具有極低的耦合噪聲,這樣就不再需要那些損耗較高的無源混頻器。MAX2027和MAX2055工作在接收機的第一、二中頻級,此兩款在其整個增益調節范圍內OIP3均可達到+40dBm。在圖1電路中數據轉換器采用的是MAX1418 (15位、65Msps)和MAX1211 (12位、65Msps),此外Maxim的數據轉換器產品還有其它采樣速率的器件,可滿足大多數設計要求。若將圖1中的第二下變頻器省去(虛線中所示),那么圖1所示電路就變成了單路下變頻器結構。

本文引用地址:http://www.j9360.com/article/156089.htm

Maxim的低噪聲: MAX1418

圖1所示的欠采樣接收機結構對ADC的噪聲和失真有著嚴格的要求。在接收機中,電平較低的有用信號單獨被數字化或同時伴隨有無用的、需要倍加關注的大幅度信號,因此要想使接收機正常工作,ADC的有效噪聲系數要按這兩種信號的極端情況(即有用信號最小、無用信號達到最大值)來計算。對于小的模擬輸入信號,ADC的噪聲基底中占支配地位的是熱噪聲和量化噪聲,決定了ADC的噪聲系數(NF)。

實際上,小信號條件下的ADC有效噪聲系數一經確定,模擬電路(RF或IF)的級聯噪聲系數也就隨之確定。ADC前級電路的最小功率增益應滿足接收電路的噪聲系數要求,通常該功率增益值以ADC過載前接收機所能容許的最大阻塞電平或最高干擾電平為上限。在BTS中,如果不采用自動增益控制(AGC),ADC的動態范圍一般無法同時滿足電路噪聲系數(接收機靈敏度)和最大阻塞兩方面的要求,AGC電路可以放在RF級或IF級電路中,也可在兩級電路中同時包含AGC電路。

MAX1418系列的其它產品對fINPUT = fCLOCK/2的基帶應用特別適用。當轉換器工作在這個頻率范圍內,采用這些基帶特性極佳的器件,將具有最佳的動態范圍。這些產品中包括針對65Msps時鐘速率的MAX1419及針對80Msps時鐘速率的MAX1427,它們的基帶SFDR (無雜散動態范圍)均可達到94.5dBc。

表1所列是MAX1418的主要技術參數:

表1. MAX1418電特性

ParameterConditionSymbolTyp ValueUnits
ResolutionN15Bits
Analog Input RangeVID2.56VP-P
Differential Input ResistanceRIN1
AC SpecificationsfCLK = 65Msps
Thermal + Quantization Noise FloorAnalog input = -35dBFSNfloor-78.2dBFS
Signal-to-Noise Ratio Analog in = -2dBFSfIN = 70MHzSNR73.6dB
Spurious-Free Dynamic Range Analog in = -2dBFSfIN = 70MHzSFDR84dB
Signal-to-Noise-and-Distortion Analog in = -2dBFSfIN = 70MHzSINAD73.3dB

不接LSB時,MAX1418也可以與14位接口器件一起工作,這樣應用時,SNR會有輕微的損失,而SFDR則不受影響。

圖2給出了無阻塞情況下ADC的噪聲分布,這里假定在ADC之前的所有模擬電路的總級聯噪聲系數為3.5dB,同時假定設計目標是ADC導致的總噪聲系數的惡化不超過0.2dB,以滿足CDMA基站接收機的靈敏度要求。這樣一個噪聲系數值應該為空中接口留有足夠的余量,不過最終結果取決于末級檢波器的Eb/No (比特能量與噪聲功率頻譜密度的比值)的要求。基于表1的MAX1418的熱噪聲 + 量化噪聲基底,當器件時鐘為61.44Msps (50x碼片率)時,其等效噪聲系數為26.9dB。由于采用了過程增益控制,1.23MHz CDMA頻道帶寬下的ADC噪聲比Nyquist寬帶下的ADC噪聲低14dB。一般情況下,為了獲得3.7dB的接收機級聯噪聲系數,總增益要達到36dB。

圖2. 無阻塞情況下的ADC噪聲分布
圖2. 無阻塞情況下的ADC噪聲分布

當ADC前端增益為36dB時,天線端超過-30dBm的單音阻塞電平將超出ADC的輸入量程。cdma2000®蜂窩基站標準規定,天線端允許的最大阻塞電平為-30dBm,此時,前端增益就需要降低6dB,這樣在標準規范允許的余量范圍之內,允許加到ADC上的最大阻塞信號更大一些。假設留有2dB的余量,前端增益減小6dB就可使天線端的最大阻塞電平變為-26dBm,ADC的最大允許輸入信號變為+4dBm (見圖3)。當出現單音阻塞時,蜂窩標準允許總的干擾(噪聲+失真)相對于參考靈敏度來說惡化3dB,可這3dB在噪聲和失真之間如何分配就留給了設計人員。

假設:出現阻塞信號時,AGC增益為6dB,設計允許RF前端級聯噪聲加失真可以使NF下降1dB (標稱值為3.5dB)。當ADC前端增益僅為30dB時,ADC的SNR決定了其有效噪聲系數為29.4dB,級聯接收機在'阻塞條件'下的噪聲系數為5.7dB,這比根據接收機靈敏度計算出來的3.7dB的噪聲系數低了2dB。由于在此計算當中未將雜散特性考慮在內,ADC的無雜散動態范圍(SFDR)還允許額外降低1dB。當存在阻塞信號時,SINAD可被用于計算有效NF,不再分別計算噪聲和SFDR基值。

圖3. 出現阻塞情況下的ADC噪聲響應
圖3. 出現阻塞情況下的ADC噪聲響應

MAX1211允許一次下變頻結構

如果在較高的IF段能夠獲得足夠的SNR和SFDR指標,欠采樣電路可以用于一次下變頻結構。Maxim的MAX1211 12位、65Msps轉換器就是采用這一結構設計的,它的引腳與即將推出的80Msps及95Msps轉換器兼容,此系列器件可對頻率高達400MHz的輸入信中頻號進行直接采樣,此外,它還具有其它先進的性能,如時鐘輸入可以是差分信號也可是單端信號,時鐘占空比可以在20%到80%之間,另外,還設計有數據有效指示器(以簡化時鐘及數據時序),采用小型40引腳QFN (6mm x 6mm x 0.8mm)封裝,二進制補碼和格雷碼數字輸出格式。表2列出了模擬輸入頻率為175MHz時MAX1211的典型交流特性。

表2. MAX1211電特性

ParameterConditionSymbolTyp ValueUnits
ResolutionN12Bits
Analog Input RangeVID2VP-P
Differential Input ResistanceRIN15
AC SpecificationsfCLK = 65Msps
Thermal + Quantization Noise FloorAnalog input = -35dBFSNfloor69.3dBFS
Signal-to-Noise Ratio Analog in = -0.2dBFSfIN = 32.5MHz
fIN = 175MHz
SNR68.3
66.8
dB
Spurious-Free Dynamic Range Analog in = -0.2dBFSfIN = 32.5MHz
fIN = 175MHz
SFDR82.4
79.7
dB
Signal-to-Noise-and-Distortion Analog in = -2dBFSfIN = 32.5MHz
fIN = 175MHz
SINAD68.1
66.5
dB

較之兩次變頻結構,一次變換器具有明顯的優勢。由于省去第二級下變頻混頻器、第二級中頻增益電路以及第二級LO合成器,元件數量及電路板空間可減少約10%,節約成本$10至$20。

上一頁 1 2 下一頁

評論


相關推薦

技術專區

關閉