基于高分辨率乘法DAC的交流信號處理簡介
簡介
所有數模轉換器(DAC)都提供與數字設置增益和所施加基準電壓之積成比例的輸出。乘法DAC與固定基準電壓DAC不同,因為它可以將高分辨率數字設置增益應用施加到可變帶寬模擬信號上。本文將討論電阻梯乘法DAC及其對交流信號處理應用的適用性。
基本原理
從1974年ADI公司推出世界首款(10 位)CMOS IC乘法DAC 以來,ADI公司就一直是乘法DAC設計與生產的領先者。它們采用一個具有適當帶寬的放大器,利用一個切換式R-2R梯和一個片內反饋電阻實現了調整交流增益或可變直流基準電壓輸入信號增益的簡單方法,從而用DAC取代了典型反相運算放大器級的輸入和反饋電阻(圖 1)。數字調整電阻梯和片內反饋電阻一起,提供與數字輸入成比例的增益(D/2n ),使RDAC起到了可變輸入電阻的作用。
圖 1. 反相增益配置
乘法DAC的市場發展迅速,歷經數代更新,產品的分辨率、精度和速度有了大幅提升,增加了各種數字存儲功能、串行通信選項,尺寸和成本大大降低并且每個芯片上還可以配置額外的DAC。最新一代的乘法DAC提供理想的構建模塊,用于控制可變直流或快速交流電壓信號的增益。
電阻(R-2R)梯用于運算放大器反饋電路,提供數字控制電流,電流經 RFB轉換成輸出電壓。放大器以低阻抗提供此輸出。基準電壓輸入具有恒定的對地電阻R。圖 2 顯示了該工作原理。圖 2a中,源電流VREF/R轉換成輸出電壓。放大器以低阻抗提供此輸出。基準電壓輸入具有恒定的對地電阻R。圖 2 顯示了該工作原理。圖 2a中,源電流IOUT1或導引至地(一般稱IOUT2)。同理,剩余電流的一半由開關S2 導引……如此類推。如果開關由一個數字字D(S1 是MSB)激活,則流經RFB (=R)的IOUT1端電流之和為 D × 2–n × VREF/R。此配置的重要優勢包括:可最大程度地降低瞬態,因為開關在地和虛地之間切換;RFB與梯形電阻片內匹配,具備出色的溫度跟蹤性能。
圖 2. a) R-2R梯原理;b) 乘法DAC,VOUT = 0 to −VREF.
數字字D給出的數值范圍取決于所用的器件。ADI公司的部分AD545x/AD554x系列乘法DAC的D值范圍(第一象限)如下:
8位 AD5450 | 0 至 255 |
10位 AD5451 | 0 至 1,023 |
12位 AD5452 | 0 至 4,095 |
14位 AD5453 | 0 至 16,383 |
16位 AD5543 | 0 至 65,535 |
提高增益
對于輸出電壓必須大于VIN的應用,可通過在DAC級后面增加外部放大器來提高增益;或者只需通過衰減反饋電壓在單級中實現,如圖 3 所示。所示近似值對R2||R3RFB。R2 和 R3 應具有相似的溫度系數,但如果R2||R3 與RFB相比較小,則其無需與DAC的溫度系數相匹配。
圖 3. 提高乘法 DAC 的增益
正輸出
要產生正電壓輸出,可以使用一個外部反相運算放大器電路來另外反轉輸入或輸出。 一些乘法DAC內置非專用匹配電阻(具有跟蹤溫度系數),因此只需額外連接一個運算放大器(圖 4 中的 A2)即可獲得正輸出,這個額外的運算放大器可以是一個雙通道器件內的配套運算放大器。
如果要求差分輸出,則需要兩個額外的運算放大器。Circuits from the Lab® CN-0143 查看完整的詳細信息。
圖 4. 乘法DAC, VOUT = 0 to VREF。AD5415、AD5405、AD5546/AD5556、AD5547/AD5557 內置此處所示的非專用電阻
圖 5. 單端-差分
評論