I2C總線信號時序分析
主控器向被控器發送的信息種類有:啟動信號、停止信號、7位地址碼、讀/寫控制位、10位地址碼、數據字節、重啟動信號、應答信號、時鐘脈沖。
被控器向主控器發送的信息種類有:應答信號、數據字節、時鐘低電平。
下面對I2C總線通信過程中出現的幾種信號狀態和時序進行分析。
①總線空閑狀態。
I2C總線總線的SDA和SCL兩條信號線同時處于高電平時,規定為總線的空閑狀態。此時各個器件的輸出級場效應管均處在截止狀態,即釋放總線,由兩條信號線各自的上拉電阻把電平拉高。
②啟動信號。
在時鐘線SCL保持高電平期間,數據線SDA上的電平被拉低(即負跳變),定義為I2C總線總線的啟動信號,它標志著一次數據傳輸的開始。
啟動信號是一種電平跳變時序信號,而不是一個電平信號。啟動信號是由主控器主動建立的,在建立該信號之前I2C總線必須處于空閑狀態,如圖1所示。
圖1 I2C總線上的啟動信號和停止信號
③停止信號。
在時鐘線SCL保持高電平期間,數據線SDA被釋放,使得SDA返回高電平(即正跳變),稱為I2C總線的停止信號,它標志著一次數據傳輸的終止。
停止信號也是一種電平跳變時序信號,而不是一個電平信號,停止信號也是由主控器主動建立的,建立該信號之后,I2C總線將返回空閑狀態。
④數據位傳送。
在I2C總線上傳送的每一位數據都有一個時鐘脈沖相對應(或同步控制),即在SCL串行時鐘的配合下,在SDA上逐位地串行傳送每一位數據。
進行數據傳送時,在SCL呈現高電平期間,SDA上的電平必須保持穩定,低電平為數據0,高電平為數據1。
只有在SCL為低電平期間,才允許SDA上的電平改變狀態。邏輯0的電平為低電壓,而邏輯1的電平取決于器件本身的正電源電壓VDD(當使用獨立電源時),如圖2所示。
圖2 I2C總線上的數據位傳送
⑤應答信號。
I2C總線上的所有數據都是以8位字節傳送的,發送器每發送一個字節,就在時鐘脈沖9期間釋放數據線,由接收器反饋一個應答信號。
應答信號為低電平時,規定為有效應答位(ACK簡稱應答位),表示接收器已經成功地接收了該字節;應答信號為高電平時,規定為非應答位(NACK),一般表示接收器接收該字節沒有成功。
對于反饋有效應答位ACK的要求是,接收器在第9個時鐘脈沖之前的低電平期間將SDA線拉低,并且確保在該時鐘的高電平期間為穩定的低電平。
如果接收器是主控器,則在它收到最后一個字節后,發送一個NACK信號,以通知被控發送器結束數據發送,并釋放SDA線,以便主控接收器發送一個停止信號P,如圖3所示。
圖3 I2C總線上的應答時序
⑥插入等待時間。
如果被控器需要延遲下一個數據字節開始傳送的時間,則可以通過把時鐘線SCL電平拉低并且保持,使主控器進入等待狀態。
一旦被控器釋放時鐘線,數據傳輸就得以繼續下去,這樣就使得被控器得到足夠時間轉移已經收到的數據字節,或者準備好即將發送的數據字節。
帶有CPU的被控器在對收到的地址字節做出應答之后,需要一定的時間去執行中斷服務子程序,來分析或比較地址碼,其間就把SCL線鉗位在低電平上,直到處理妥當后才釋放SCL線,進而使主控器繼續后續數據字節的發送,如圖4所示。
圖4 I2C總線上的插入等待時間
⑦重啟動信號。
在主控器控制總線期間完成了一次數據通信(發送或接收)之后,如果想繼續占用總線再進行一次數據通信(發送或接收),而又不釋放總線,就需要利用重啟動Sr信號時序。
重啟動信號Sr既作為前一次數據傳輸的結束,又作為后一次數據傳輸的開始。利用重啟動信號的優點是,在前后兩次通信之間主控器不需要釋放總線,這樣就不會丟失總線的控制權,即不讓其他主器件節點搶占總線。
⑧時鐘同步。
如果在某一I2C總線系統中存在兩個主器件節點,分別記為主器件1和主器件2,其時鐘輸出端分別為CLK1和CL【0,它們都有控制總線的能力。
假設在某一期間兩者相繼向SCL線發出了波形不同的時鐘脈沖序列CLK1和CLK2(時鐘脈沖的高、低電平寬度都是依靠各自內部專用計數器定時產生的),在總線控制權還沒有裁定之前這種現象是可能出現的。
鑒于I2C總線的“線與”特性,使得時鐘線SCL上得到的時鐘信號波形,既不像主器件1所期望的CLK1,也不像主器件2所期望的CLK2,而是兩者進行邏輯與的結果。
CLKI和CLK2的合成波形作為共同的同步時鐘信號,一旦總線控制權裁定給某一主器件,則總線時鐘信號將會只由該主器件產生,如圖5所示。
圖5 I2C總線上的時鐘同步
⑨總線沖突和總線仲裁。
假如在某I2C總線系統中存在兩個主器件節點,分別記為主器件1和主器件2,其數據輸出端分別為DATA1和DATA2,它們都有控制總線的能力,這就存在著發生總線沖突(即寫沖突)的可能性。
假設在某一瞬間兩者相繼向總線發出了啟動信號,鑒于:I2C總線的“線與”特性,使得在數據線SDA上得到的信號波形是DATA1和DATA2兩者相與的結果,該結果略微超前送出低電平的主器件1,其DATA1的下降沿被當做SDA的下降沿。
在總線被啟動后,主器件1企圖發送數據“101……”,主器件2企圖發送數據“100101……”。
兩個主器件在每次發出一個數據位的同時都要對自己輸出端的信號電平進行抽檢,只要抽檢的結果與它們自己預期的電平相符,就會繼續占用總線,總線控制權也就得不到裁定結果。
主器件1的第3位期望發送“1”,也就是在第3個時鐘周期內送出高電平。
在該時鐘周期的高電平期間,主器件1進行例行抽檢時,結果檢測到一個不相匹配的電平“0”,這時主器件1只好決定放棄總線控制杈;因此,主器件2就成了總線的惟一主宰者,總線控制權也就最終得出了裁定結果,從而實現了總線仲裁的功能。
從以上總線仲裁的完成過程可以得出:仲裁過程主器件1和主器件2都不會丟失數據;各個主器件沒有優先級別之分,總線控制權是隨機裁定的,即使是搶先發送啟動信號的主器件1最終也并沒有得到控制杈。
系統實際上遵循的是“低電平優先”的仲裁原則,將總線判給在數據線上先發送低電平的主器件,而其他發送高電平的主器件將失去總線控制權,如圖6所示。
圖6 I2C總線上的總線仲裁
⑩總線封鎖狀態。
在特殊情況下,如果需要禁止所有發生在I2C總線上的通信活動,封鎖或關閉總線是一種可行途徑,只要掛接于該總線上的任意一個器件將時鐘線SCL鎖定在低電平上即可。
評論