基于MC9S12DP256的燃料電池電動汽車整車控制器硬件研制
整車控制器在功能完善的基礎上,可靠性是其質量好壞的主要技術指標。在燃料電池電動汽車整車控制器的工作環境中,電機、變頻器和鎳氫蓄電池組傳輸的母線電流變化較大(特別是當變頻器進行高頻調制時),產生的空間電磁干擾很強;另外,其工作空間的溫度變化范圍廣、振動強度大。以上種種不利因素對整車控制器可能造成的干擾后果主要表現在下述幾個方面:
(1)數據采集誤差加大。
(2)控制狀態失靈。
(3)數據受干擾發生變化。
(4)程序運行失常。
為保證整車控制器運行正常,此次的可靠性設計采用了元器件級可靠性設計和系統級可靠性設計相結合的方法,具體表現在:芯片的溫度范圍控制、部件的冗余設計、系統的電磁兼容性設計等。
3.1 芯片的溫度范圍
在整車控制器的設計中,絕大多數芯片溫度范圍是汽車級(-40℃~+125℃),其他極少數芯片因為價格原因選擇工業級(-40℃~+85℃)。
3.2 冗余設計
冗余設計是指通過在系統結構上增加冗余資源來減小故障造成的影響,或將故障隔離并校正錯誤,使得系統即使發生了故障或差錯,其功能仍不受影響的技術[4]。本冗余設計采用增加功能電路的數量來實現,整體冗余量達50%以上,如表1所示。
.jpg)
3.3 電磁兼容性設計
由于整車控制器應用環境比較惡劣,干擾嚴重,存在多種噪聲和耦合方式,所以電磁兼容性設計在所有可靠性設計中占有很重要的地位。設計中采取了濾波技術、去耦電路、屏蔽技術、隔離技術和接地技術等抗干擾技術[5][6],具體如下:
(1)選用集成度高的元器件。可以降低電路板元器件的數目,使電路板布局簡單,減少焊盤和連線,因而可以大大減少受干擾的概率,增加電路板的抗干擾能力。
(2)加粗電源線和地線,數據線、地址線及控制線盡量短,以減少對地電容。
(3)數字電路和模擬電路分區布置,并加入濾波和去耦電路。
(4)采用四層電路板的設計。相對于兩層板而言,有獨立的地平面和電源平面,并且信號線和地線間距可以很緊密,因此能有效減小共模阻抗和感性耦合。
(5)采用敷銅技術。既減小回路面積(因而減小了輻射),又可以減小導線之間的串擾。
3.4 可靠性測試
吉林大學汽車動態模擬國家重點實驗室對所開發設計的整車控制器做了初步的可靠性測試。測試過程如下:
(1)高低溫測試:在低溫-25℃、高溫125℃中分別保持6個小時。
(2)振動測試:掃描頻率范圍17~200Hz,最大振幅0.78mm,在60~200Hz時加速度50,一次掃描時間15min。
(3)電磁兼容性測試:利用實車簡單模擬各種汽車電磁干擾工況,做初步測試。
在整個測試過程中,整車控制器工作正常,未出現復位現象,各功能模塊發送、接收數據正常。在振動測試時,元器件無脫落及損壞現象。
4 整車臺架試驗
在進行了可靠性測試之后,將整車控制器與燃料電池及其控制器、電機及其控制器、鎳氫蓄電池組及其控制器等部件連接在一起,實現了整個燃料電池電動汽車的動力總成試驗臺架。在臺架上做了以下的試驗:
(1)通信聯調試驗:控制系統CAN通訊試驗;數據監控系統的信號采集。
(2)整車控制器控制邏輯試驗:按照與實際車輛相同的駕駛模式,重點進行加速模式、啟車模式、充電模式、再生制動模式、動力蓄電池充電模式、巡航行駛模式的控制邏輯單模式調試。
(3)整車控制器控制報警試驗。
(4)整車控制器控制模式切換試驗:重點考核各種控制模式間的切換。
評論