電磁感應式無線充電核心技術(二):數據傳輸
前面我們講解到了電磁感應式無線充電核心技術(一):諧振控制,下面我們將繼續探討電磁感應式無線充電核心技術的數據傳輸部分。
數據傳輸
在電磁感應式電力系統中最重要的技術問題就是必需要能識別放置于發射線圈上的物體,感應電力就與烹調用的電磁爐一樣會發射強大的電磁波能量,若直接將此能量打在金屬上則會發熱造成危險;為解決此問題各廠商發展可識別目標之技術,經過幾年的發展確認藉由受電端接收線圈反饋訊號由供電端發射線圈接收訊號為最好的解決方式,為完成在感應線圈上數據傳輸的功能為系統中最重要的核心技術。在傳送電力之感應線圈上要穩定傳送數據非常困難,主要載波是用在大功率的電力傳輸,其會受到在電源使用中的各種干擾狀況,另外先前也提到這是一個變頻式的控制系統,所以主載波工作頻率也不會固定。因為困難所以先前廠商推出的技術有除了感應線圈供應電力外,另外在建立一個無線通信頻道,例如紅外線、藍芽、RFID標簽、WiFi…等,但外加這些模塊已經違背的成本原則,這個產品為充電器,成本一定要控制的相當低才可被市場所接受,所以利用感應線圈本身作數據傳輸為業界必采用的方式。
利用感應電力之線圈進行數據傳輸會遇到兩個問題,就是如何發送數據與如何接收數據,原理同RFID的數據傳輸方式,供電端線圈上發送主載波打到受電端線圈上,再由受電端電路上控制負載變化來進行反饋,在現行的感應電力設計中為單向傳輸,也就是電力能量(LC振蕩主載波)由供電端發送到受電端,而受電端反饋資料碼到供電端,而受電端收到供電端的能量只有強弱之分沒有內含通訊成份,這個數據碼傳送的機制也只有受電端靠近后收到電力能量才能反饋,在供電端未提供能量的狀況下并無法進行數據碼傳送,乍看來只是半套的通訊機制在感應電力系統中卻非常實用,因為滿足了系統所需要的功能:供電端辨識受電端后開啟發送能量進行電力傳輸,受電端傳回電力狀況由供電端進行調整。
參考圖(六)中qi規格書中受電端接收電力與數據反饋架構,其中可以看到有兩種設計架構,分別是電阻式與電容式兩種。電阻式調制反饋訊號的方式源自被動式RFID技術,利用接收線圈阻抗切換反饋訊號到發射線圈進行讀取,運用在感應式電力上由美國ACCESS BUSINESS GROUP (Fulton) 所申請之美國專利公開號20110273138 WIRELESS CHARGING SYSTEM (臺灣公開號201018042 無線充電系統)內容中有提到系利用切換開關位于接收端整流器后方的負載電阻,即圖(六)中的Rcm使線圈上的阻抗特性變化反饋到供電線圈上,經由供電線圈上的偵測電路進行解析變化,再有供電端上的處理器內軟件進行譯碼動作。參考圖(七)在專利說明書中,Fig.7中表示供電線圈上的訊號狀況,當Rcm上的開關導通時,拉低受電線圈上的阻抗反饋到供電線圈上使其振幅變大,在編碼的方式采用UART通訊方式中asynchronous serial format(異步串聯格式)進行編碼,即在固定的計時周期下該時間點是否有發生調制狀態變化進行判讀邏輯數據碼,但這個編碼方式可以發線將會有一段周期的時間持續在調制狀態。參考圖(八)為qi規格書中的數據傳輸格式,可以看到是由一個2KHz的計時頻率進行數據調制與譯碼的數據傳送頻率,經由推算在一個調至狀態下最長會有一個周期的時間在調制狀態。UART通訊方式中調制狀態的長短并沒有影響到系統中的功能,但在感應式電力系統中調制狀態會影響到供電的狀態,原因是供電端的主載波本身是用來傳送電力的,透過供電端與受電端線圈耦合的效果能傳送強大的電流驅動力,而受電端的電阻負載需要承受驅動電流進行反饋,當功率加大后在Rcm上所承受的功率也會增加,且在調制期間原要通往受電端輸出的電流也會被Rcm所分流,所以在調制期間受電端的輸出能力會被損耗;另外調制的時間會因為傳送頻率提高而縮短,因為在感應式電源系統中主載波的工作頻率受于組件與電磁干擾法規限制下只能在較低的頻率下運作(約100~200KHz),而數據是靠主載波上的調制狀態傳送,所以數據傳送頻率需要遠低于主載波頻率下才能順利運作,在前述條件的沖突下可以發現當感應電力系統設計的功率提高后,電阻負載的數據調制方式為不可行,因為在調制電路上的電阻器會有相當長的周期在導通的狀態造成功率消耗。

圖(六)qi規格書中受電端接收電力與數據反饋架構

評論