a一级爱做片免费观看欧美,久久国产一区二区,日本一二三区免费,久草视频手机在线观看

新聞中心

EEPW首頁 > EDA/PCB > 業界動態 > 功率半導體氧化鎵到底是什么

功率半導體氧化鎵到底是什么

作者: 時間:2018-12-26 來源:半導體行業觀察 收藏

  α-Ga2O3

本文引用地址:http://www.j9360.com/article/201812/396056.htm

  2018年初,電裝與FLOSFIA公司決定共同開發面向車載應用的新一代材料——α-Ga2O3。

  α-Ga2O3是京都大學藤田靜雄教授全球首次開發成功的單結晶合成材料,可用于電動車的轉換器,能實現低功耗、低成本、小型輕量化。

  FLOSFIA是于2011年由京都大學發起成立的一家合資公司。致力于α-Ga2O3研發。2015年發表了世界最小的導通電阻0.1mΩcm2 SBD(Schottky Barrier Diode)試制數據,2016年成功研制了新型P型半導體α-Ir2O3。

  MOSFET

  今年早些時候,布法羅大學(UB)工程與應用科學學院電氣工程副教授Uttam Singisetti博士和他的學生制造了一個厚度為5微米、由制成的MOSFET。

  研究人員表示,該晶體管的擊穿電壓為1,850 V,比氧化鎵半導體的記錄增加了一倍多。擊穿電壓是將材料(在這種情況下為氧化鎵)從絕緣體轉換為導體所需的電量。擊穿電壓越高,器件可以處理的功率越高。

  Singisetti表示,由于晶體管的尺寸相對較大,因此不適合智能手機和其他小型設備。但它可能有助于調節大規模運營中的能量流,例如收獲太陽能和風能的發電廠,以及電動汽車、火車和飛機等。

  但是,該研究還需要深入下去,以解決其導熱性差的缺點。

  縱向Ga2O3功率器件

  近期,日本情報通信研究機構(NICT)與東京農工大學(TUAT)演示了一種“縱向的”氧化鎵MOSFET,它采用“全離子注入( all-ion-implanted )”工藝進行N型與P型摻雜,為低成本、高可制造性的Ga2O3 功率電子器件鋪路。

  過去幾年來,Ga2O3 晶體管的開發集中于研究橫向幾何結構。然而,由于器件面積較大、發熱帶來的可靠性問題、表面不穩定性,橫向器件不容易經受住許多應用所需的高電流與高電壓的考驗。

  相比而言,縱向幾何結構能以更高的電流驅動,不必增加芯片尺寸,從而簡化了熱管理。縱向晶體管開關的特性,是通過向半導體中引入兩種雜質(摻雜劑)來設計的。開關“打開”時,N型摻雜,提供移動的載流子(電子),用于攜帶電流;開關“關閉”時,P型摻雜,會啟動電壓阻斷。

  Masataka Higashiwaki 領導的 NICT 科研小組率先在 Ga2O3 器件中使用硅作為N型摻雜劑,但是科學界長期以來一直在為找到一種合適的P型摻雜劑而努力。今年早些時候,同一科研小組,公布了用氮(N)作為P型摻雜劑的可行性。他們最新的成果包括首次通過高能量摻雜劑引入工藝,即所謂的“離子注入”,整合硅與氮摻雜,設計出一個 Ga2O3 晶體管。

  據悉,縱向功率器件可以實現超過100A的電流和超過1kV的電壓,這樣的結合是許多應用所要求的,特別是電力工業和汽車電力系統所需要的。

  熱管理方法研究

  近期,美國佛羅里達大學、美國海軍研究實驗室和韓國大學的研究人員也在研究氧化鎵MOSFET。佛羅里達大學材料科學與工程教授Stephen Pearton表示,它們正在研究氧化鎵作為MOSFET的發展潛力。傳統上,這些微型電子開關由硅制成,用于筆記本電腦、智能手機和其他電子產品。對于像電動汽車充電站這樣的系統,我們需要能夠在比硅基器件更高的功率水平下工作的MOSFET,而氧化鎵可能就是解決方案。為了實現這些先進的MOSFET,該團隊確定了需要改進柵極電介質,以及更有效地從器件中釋放熱量的熱管理方法。

  結語

  氧化鎵是一種新興的材料,其禁帶寬度大于硅,氮化鎵和碳化硅,在高功率應用領域的應用優勢愈加明顯。但氧化鎵不會取代SiC和GaN,后兩者是硅之后的下一代主要半導體材料。

  氧化鎵更有可能在擴展超寬禁帶系統可用的功率和電壓范圍方面發揮作用。而最有希望的應用可能是電力調節和配電系統中的高壓整流器,如電動汽車和光伏太陽能系統。

  但是,在成為電力電子產品的主要競爭者之前,氧化鎵仍需要開展更多的研發和推進工作,以克服自身的不足。


上一頁 1 2 下一頁

評論


相關推薦

技術專區

關閉