單片機編程之匯編語言基礎-PIC單片機匯編指令
BTFSS STATUS,Z ;X=1否?
GOTO LOOP ;X=1繼續循環
┋ ;X≠1跳出循環
8) 查表程序
查表是程序中經常用到的一種操作。下例是將十進制0~9轉換成7段LED數字顯示值。若以B口的RB0~RB6來驅動LED的a~g線段,則有如下關系:
設LED為共陽,則0~9數字對應的線段值如下表:
十進數 線段值 十進數 線段值
0 C0H 5 92H
1 C9H 6 82H
2 A4H 7 F8H
3 B0H 8 80H
4 99H 9 90H
PIC的查表程序可以利用子程序帶值返回的特點來實現。具體是在主程序中先取表數據地址放入W,接著調用子程序,子程序的第一條指令將W置入PC,則程序跳到數據地址的地方,再由“RETLW”指令將數據放入W返回到主程序。下面程序以F10放表頭地址。
MOVLW TABLE ;表頭地址→F10
MOVWF 10
┋
MOVLW 1 ;1→W,準備取“1”的線段值
ADDWF 10,1 ;F10+W =“1”的數據地址
CALL CONVERT
MOVWF 6 ;線段值置到B口,點亮LED
┋
CONVERT MOVWF 2 ;W→PC TABLE
RETLW 0C0H ;“0”線段值
RETLW 0F9H ;“1”線段值
┋
RETLW 90H ;“9”線段值
9)“READ……DATA,RESTORE”格式程序
“READ……DATA”程序是每次讀取數據表的一個數據,然后將數據指針加1,準備取下一個數據。下例程序中以F10為數據表起始地址,F11做數據指針。
POINTER EQU 11 ;定義F11名稱為POINTER
┋
MOVLW DATA
MOVWF 10 ;數據表頭地址→F10
CLRF POINTER ;數據指針清零
┋
MOVF POINTER,0
ADDWF 10,0 ;W =F10+POINTER
┋
INCF POINTER,1 ;指針加1
CALL CONVERT ;調子程序,取表格數據
┋
CONVERT MOVWF 2 ;數據地址→PC
DATA RETLW 20H ;數據
┋
RETLW 15H ;數據
如果要執行“RESTORE”,只要執行一條“CLRF POINTER”即可。
10) 延時程序
如果延時時間較短,可以讓程序簡單地連續執行幾條空操作指令“NOP”。如果延時時間長,可以用循環來實現。下例以F10計算,使循環重復執行100次。
MOVLW D‘100’
MOVWF 10
LOOP DECFSZ 10,1 ;F10—1→F10,結果為零則跳
GOTO LOOP
┋
延時程序中計算指令執行的時間和即為延時時間。如果使用4MHz振蕩,則每個指令周期為1μS。所以單周期指令時間為1μS,雙周期指令時間為 2μS。在上例的LOOP循環延時時間即為:(1+2)*100+2=302(μS)。在循環中插入空操作指令即可延長延時時間:
MOVLW D‘100’
MOVWF 10
LOOP NOP
NOP
NOP
DECFSZ 10,1
GOTO LOOP
┋
延時時間=(1+1+1+1+2)*100+2=602(μS)。
用幾個循環嵌套的方式可以大大延長延時時間。下例用2個循環來做延時:
MOVLW D‘100’
MOVWF 10
LOOP MOVLW D‘16’
MOVWF 11
LOOP1 DECFSZ 11,1
GOTO LOOP1
DECFSZ 10,1
GOTO LOOP
┋
延時時間=1+1+[1+1+(1+2)*16-1+1+2]*100-1=5201(μS)
11) RTCC計數器的使用
RTCC是一個脈沖計數器,它的計數脈沖有二個來源,一個是從RTCC引腳輸入的外部信號,一個是內部的指令時鐘信號。可以用程序來選擇其中一個信號源作為輸入。RTCC可被程序用作計時之用;程序讀取RTCC寄存器值以計算時間。當RTCC作為內部計時器使用時需將RTCC管腳接VDD或VSS,以減少干擾和耗電流。下例程序以RTCC做延時:
RTCC EQU 1
┋
CLRF RTCC ;RTCC清0
MOVLW 07H
OPTION ;選擇預設倍數1:256→RTCC
LOOP MOVLW 255 ;RTCC計數終值
SUBWF RTCC,0
BTFSS STATUS,Z ;RTCC=255?
GOTO LOOP
┋
這個延時程序中,每過256個指令周期RTCC寄存器增1(分頻比=1:256),設芯片使用4MHz振蕩,則:
延時時間=256*256=65536(μS)
RTCC是自振式的,在它計數時,程序可以去做別的事情,只要隔一段時間去讀取它,檢測它的計數值即可。
12) 寄存器體(BANK)的尋址
對于PIC16C54/55/56,寄存器有32個,只有一個體(BANK),故不存在體尋址問題,對于PIC16C57/58來說,寄存器則有80 個,分為4個體(BANK0-BANK3)。在對F4(FSR)的說明中可知,F4的bit6和bit5是寄存器體尋址位,其對應關系如下:
Bit6 Bit5 BANK 物理地址
0 0 BANK0 10H~1FH
0 1 BANK1 30H~3FH
1 0 BANK2 50H~5FH
1 1 BANK3 70H~7FH
當芯片上電RESET后,F4的bit6,bit5是隨機的,非上電的RESET則保持原先狀態不變。
下面的例子對BANK1和BANK2的30H及50H寄存器寫入數據。
例1.(設目前體選為BANK0)
BSF 4,5 ;置位bit5=1,選擇BANK1
MOVLW DATA
MOVWF 10H ; DATA→30H
BCF 4,5
BSF 4,6 ;bit6=1,bit5=0選擇BANK2
MOVWF 10H ;DATA→50H
從上例中我們看到,對某一體(BANK)中的寄存器進行讀寫,首先要先對F4中的體尋址位進行操作。實際應用中一般上電復位后先清F4的bit6和bit5為0,使之指向BANK0,以后再根據需要使其指向相應的體。
評論